|
from ..models.omnigen import OmniGenTransformer |
|
from ..models.sdxl_vae_encoder import SDXLVAEEncoder |
|
from ..models.sdxl_vae_decoder import SDXLVAEDecoder |
|
from ..models.model_manager import ModelManager |
|
from ..prompters.omnigen_prompter import OmniGenPrompter |
|
from ..schedulers import FlowMatchScheduler |
|
from .base import BasePipeline |
|
from typing import Optional, Dict, Any, Tuple, List |
|
from transformers.cache_utils import DynamicCache |
|
import torch, os |
|
from tqdm import tqdm |
|
|
|
|
|
|
|
class OmniGenCache(DynamicCache): |
|
def __init__(self, |
|
num_tokens_for_img: int, offload_kv_cache: bool=False) -> None: |
|
if not torch.cuda.is_available(): |
|
print("No available GPU, offload_kv_cache will be set to False, which will result in large memory usage and time cost when input multiple images!!!") |
|
offload_kv_cache = False |
|
raise RuntimeError("OffloadedCache can only be used with a GPU") |
|
super().__init__() |
|
self.original_device = [] |
|
self.prefetch_stream = torch.cuda.Stream() |
|
self.num_tokens_for_img = num_tokens_for_img |
|
self.offload_kv_cache = offload_kv_cache |
|
|
|
def prefetch_layer(self, layer_idx: int): |
|
"Starts prefetching the next layer cache" |
|
if layer_idx < len(self): |
|
with torch.cuda.stream(self.prefetch_stream): |
|
|
|
device = self.original_device[layer_idx] |
|
self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device, non_blocking=True) |
|
self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device, non_blocking=True) |
|
|
|
|
|
def evict_previous_layer(self, layer_idx: int): |
|
"Moves the previous layer cache to the CPU" |
|
if len(self) > 2: |
|
|
|
if layer_idx == 0: |
|
prev_layer_idx = -1 |
|
else: |
|
prev_layer_idx = (layer_idx - 1) % len(self) |
|
self.key_cache[prev_layer_idx] = self.key_cache[prev_layer_idx].to("cpu", non_blocking=True) |
|
self.value_cache[prev_layer_idx] = self.value_cache[prev_layer_idx].to("cpu", non_blocking=True) |
|
|
|
|
|
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]: |
|
"Gets the cache for this layer to the device. Prefetches the next and evicts the previous layer." |
|
if layer_idx < len(self): |
|
if self.offload_kv_cache: |
|
|
|
torch.cuda.current_stream().synchronize() |
|
self.evict_previous_layer(layer_idx) |
|
|
|
original_device = self.original_device[layer_idx] |
|
|
|
torch.cuda.synchronize(self.prefetch_stream) |
|
key_tensor = self.key_cache[layer_idx] |
|
value_tensor = self.value_cache[layer_idx] |
|
|
|
|
|
self.prefetch_layer((layer_idx + 1) % len(self)) |
|
else: |
|
key_tensor = self.key_cache[layer_idx] |
|
value_tensor = self.value_cache[layer_idx] |
|
return (key_tensor, value_tensor) |
|
else: |
|
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}") |
|
|
|
|
|
def update( |
|
self, |
|
key_states: torch.Tensor, |
|
value_states: torch.Tensor, |
|
layer_idx: int, |
|
cache_kwargs: Optional[Dict[str, Any]] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`. |
|
Parameters: |
|
key_states (`torch.Tensor`): |
|
The new key states to cache. |
|
value_states (`torch.Tensor`): |
|
The new value states to cache. |
|
layer_idx (`int`): |
|
The index of the layer to cache the states for. |
|
cache_kwargs (`Dict[str, Any]`, `optional`): |
|
Additional arguments for the cache subclass. No additional arguments are used in `OffloadedCache`. |
|
Return: |
|
A tuple containing the updated key and value states. |
|
""" |
|
|
|
if len(self.key_cache) < layer_idx: |
|
raise ValueError("OffloadedCache does not support model usage where layers are skipped. Use DynamicCache.") |
|
elif len(self.key_cache) == layer_idx: |
|
|
|
key_states = key_states[..., :-(self.num_tokens_for_img+1), :] |
|
value_states = value_states[..., :-(self.num_tokens_for_img+1), :] |
|
|
|
|
|
if layer_idx == 0: |
|
self._seen_tokens += key_states.shape[-2] |
|
|
|
self.key_cache.append(key_states) |
|
self.value_cache.append(value_states) |
|
self.original_device.append(key_states.device) |
|
if self.offload_kv_cache: |
|
self.evict_previous_layer(layer_idx) |
|
return self.key_cache[layer_idx], self.value_cache[layer_idx] |
|
else: |
|
|
|
key_tensor, value_tensor = self[layer_idx] |
|
k = torch.cat([key_tensor, key_states], dim=-2) |
|
v = torch.cat([value_tensor, value_states], dim=-2) |
|
return k, v |
|
|
|
|
|
|
|
class OmnigenImagePipeline(BasePipeline): |
|
|
|
def __init__(self, device="cuda", torch_dtype=torch.float16): |
|
super().__init__(device=device, torch_dtype=torch_dtype) |
|
self.scheduler = FlowMatchScheduler(num_train_timesteps=1, shift=1, inverse_timesteps=True, sigma_min=0, sigma_max=1) |
|
|
|
self.vae_decoder: SDXLVAEDecoder = None |
|
self.vae_encoder: SDXLVAEEncoder = None |
|
self.transformer: OmniGenTransformer = None |
|
self.prompter: OmniGenPrompter = None |
|
self.model_names = ['transformer', 'vae_decoder', 'vae_encoder'] |
|
|
|
|
|
def denoising_model(self): |
|
return self.transformer |
|
|
|
|
|
def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]): |
|
|
|
self.transformer, model_path = model_manager.fetch_model("omnigen_transformer", require_model_path=True) |
|
self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder") |
|
self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder") |
|
self.prompter = OmniGenPrompter.from_pretrained(os.path.dirname(model_path)) |
|
|
|
|
|
@staticmethod |
|
def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[], device=None): |
|
pipe = OmnigenImagePipeline( |
|
device=model_manager.device if device is None else device, |
|
torch_dtype=model_manager.torch_dtype, |
|
) |
|
pipe.fetch_models(model_manager, prompt_refiner_classes=[]) |
|
return pipe |
|
|
|
|
|
def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): |
|
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
return latents |
|
|
|
|
|
def encode_images(self, images, tiled=False, tile_size=64, tile_stride=32): |
|
latents = [self.encode_image(image.to(device=self.device), tiled, tile_size, tile_stride).to(self.torch_dtype) for image in images] |
|
return latents |
|
|
|
|
|
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): |
|
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
image = self.vae_output_to_image(image) |
|
return image |
|
|
|
|
|
def encode_prompt(self, prompt, clip_skip=1, positive=True): |
|
prompt_emb = self.prompter.encode_prompt(prompt, clip_skip=clip_skip, device=self.device, positive=positive) |
|
return {"encoder_hidden_states": prompt_emb} |
|
|
|
|
|
def prepare_extra_input(self, latents=None): |
|
return {} |
|
|
|
|
|
def crop_position_ids_for_cache(self, position_ids, num_tokens_for_img): |
|
if isinstance(position_ids, list): |
|
for i in range(len(position_ids)): |
|
position_ids[i] = position_ids[i][:, -(num_tokens_for_img+1):] |
|
else: |
|
position_ids = position_ids[:, -(num_tokens_for_img+1):] |
|
return position_ids |
|
|
|
|
|
def crop_attention_mask_for_cache(self, attention_mask, num_tokens_for_img): |
|
if isinstance(attention_mask, list): |
|
return [x[..., -(num_tokens_for_img+1):, :] for x in attention_mask] |
|
return attention_mask[..., -(num_tokens_for_img+1):, :] |
|
|
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt, |
|
reference_images=[], |
|
cfg_scale=2.0, |
|
image_cfg_scale=2.0, |
|
use_kv_cache=True, |
|
offload_kv_cache=True, |
|
input_image=None, |
|
denoising_strength=1.0, |
|
height=1024, |
|
width=1024, |
|
num_inference_steps=20, |
|
tiled=False, |
|
tile_size=64, |
|
tile_stride=32, |
|
seed=None, |
|
progress_bar_cmd=tqdm, |
|
progress_bar_st=None, |
|
): |
|
height, width = self.check_resize_height_width(height, width) |
|
|
|
|
|
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) |
|
|
|
|
|
if input_image is not None: |
|
self.load_models_to_device(['vae_encoder']) |
|
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) |
|
latents = self.encode_image(image, **tiler_kwargs) |
|
noise = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) |
|
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) |
|
else: |
|
latents = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) |
|
latents = latents.repeat(3, 1, 1, 1) |
|
|
|
|
|
input_data = self.prompter(prompt, reference_images, height=height, width=width, use_img_cfg=True, separate_cfg_input=True, use_input_image_size_as_output=False) |
|
|
|
|
|
reference_latents = [self.encode_images(images, **tiler_kwargs) for images in input_data['input_pixel_values']] |
|
|
|
|
|
model_kwargs = dict(input_ids=[input_ids.to(self.device) for input_ids in input_data['input_ids']], |
|
input_img_latents=reference_latents, |
|
input_image_sizes=input_data['input_image_sizes'], |
|
attention_mask=[attention_mask.to(self.device) for attention_mask in input_data["attention_mask"]], |
|
position_ids=[position_ids.to(self.device) for position_ids in input_data["position_ids"]], |
|
cfg_scale=cfg_scale, |
|
img_cfg_scale=image_cfg_scale, |
|
use_img_cfg=True, |
|
use_kv_cache=use_kv_cache, |
|
offload_model=False, |
|
) |
|
|
|
|
|
self.load_models_to_device(['transformer']) |
|
cache = [OmniGenCache(latents.size(-1)*latents.size(-2) // 4, offload_kv_cache) for _ in range(len(model_kwargs['input_ids']))] if use_kv_cache else None |
|
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): |
|
timestep = timestep.unsqueeze(0).repeat(latents.shape[0]).to(self.device) |
|
|
|
|
|
noise_pred, cache = self.transformer.forward_with_separate_cfg(latents, timestep, past_key_values=cache, **model_kwargs) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) |
|
|
|
|
|
if progress_id == 0 and use_kv_cache: |
|
num_tokens_for_img = latents.size(-1)*latents.size(-2) // 4 |
|
if isinstance(cache, list): |
|
model_kwargs['input_ids'] = [None] * len(cache) |
|
else: |
|
model_kwargs['input_ids'] = None |
|
model_kwargs['position_ids'] = self.crop_position_ids_for_cache(model_kwargs['position_ids'], num_tokens_for_img) |
|
model_kwargs['attention_mask'] = self.crop_attention_mask_for_cache(model_kwargs['attention_mask'], num_tokens_for_img) |
|
|
|
|
|
if progress_bar_st is not None: |
|
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) |
|
|
|
|
|
del cache |
|
self.load_models_to_device(['vae_decoder']) |
|
image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) |
|
|
|
|
|
self.load_models_to_device([]) |
|
return image |
|
|