|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from .stepvideo_dit import RMSNorm |
|
from safetensors.torch import load_file |
|
from transformers.modeling_utils import PretrainedConfig, PreTrainedModel |
|
from einops import rearrange |
|
import json |
|
from typing import List |
|
from functools import wraps |
|
import warnings |
|
|
|
|
|
|
|
class EmptyInitOnDevice(torch.overrides.TorchFunctionMode): |
|
def __init__(self, device=None): |
|
self.device = device |
|
|
|
def __torch_function__(self, func, types, args=(), kwargs=None): |
|
kwargs = kwargs or {} |
|
if getattr(func, '__module__', None) == 'torch.nn.init': |
|
if 'tensor' in kwargs: |
|
return kwargs['tensor'] |
|
else: |
|
return args[0] |
|
if self.device is not None and func in torch.utils._device._device_constructors() and kwargs.get('device') is None: |
|
kwargs['device'] = self.device |
|
return func(*args, **kwargs) |
|
|
|
|
|
def with_empty_init(func): |
|
@wraps(func) |
|
def wrapper(*args, **kwargs): |
|
with EmptyInitOnDevice('cpu'): |
|
return func(*args, **kwargs) |
|
return wrapper |
|
|
|
|
|
|
|
class LLaMaEmbedding(nn.Module): |
|
"""Language model embeddings. |
|
|
|
Arguments: |
|
hidden_size: hidden size |
|
vocab_size: vocabulary size |
|
max_sequence_length: maximum size of sequence. This |
|
is used for positional embedding |
|
embedding_dropout_prob: dropout probability for embeddings |
|
init_method: weight initialization method |
|
num_tokentypes: size of the token-type embeddings. 0 value |
|
will ignore this embedding |
|
""" |
|
|
|
def __init__(self, |
|
cfg, |
|
): |
|
super().__init__() |
|
self.hidden_size = cfg.hidden_size |
|
self.params_dtype = cfg.params_dtype |
|
self.fp32_residual_connection = cfg.fp32_residual_connection |
|
self.embedding_weights_in_fp32 = cfg.embedding_weights_in_fp32 |
|
self.word_embeddings = torch.nn.Embedding( |
|
cfg.padded_vocab_size, self.hidden_size, |
|
) |
|
self.embedding_dropout = torch.nn.Dropout(cfg.hidden_dropout) |
|
|
|
def forward(self, input_ids): |
|
|
|
if self.embedding_weights_in_fp32: |
|
self.word_embeddings = self.word_embeddings.to(torch.float32) |
|
embeddings = self.word_embeddings(input_ids) |
|
if self.embedding_weights_in_fp32: |
|
embeddings = embeddings.to(self.params_dtype) |
|
self.word_embeddings = self.word_embeddings.to(self.params_dtype) |
|
|
|
|
|
embeddings = embeddings.transpose(0, 1).contiguous() |
|
|
|
|
|
if self.fp32_residual_connection: |
|
embeddings = embeddings.float() |
|
|
|
|
|
embeddings = self.embedding_dropout(embeddings) |
|
|
|
return embeddings |
|
|
|
|
|
|
|
class StepChatTokenizer: |
|
"""Step Chat Tokenizer""" |
|
|
|
def __init__( |
|
self, model_file, name="StepChatTokenizer", |
|
bot_token="<|BOT|>", |
|
eot_token="<|EOT|>", |
|
call_start_token="<|CALL_START|>", |
|
call_end_token="<|CALL_END|>", |
|
think_start_token="<|THINK_START|>", |
|
think_end_token="<|THINK_END|>", |
|
mask_start_token="<|MASK_1e69f|>", |
|
mask_end_token="<|UNMASK_1e69f|>", |
|
): |
|
import sentencepiece |
|
|
|
self._tokenizer = sentencepiece.SentencePieceProcessor(model_file=model_file) |
|
|
|
self._vocab = {} |
|
self._inv_vocab = {} |
|
|
|
self._special_tokens = {} |
|
self._inv_special_tokens = {} |
|
|
|
self._t5_tokens = [] |
|
|
|
for idx in range(self._tokenizer.get_piece_size()): |
|
text = self._tokenizer.id_to_piece(idx) |
|
self._inv_vocab[idx] = text |
|
self._vocab[text] = idx |
|
|
|
if self._tokenizer.is_control(idx) or self._tokenizer.is_unknown(idx): |
|
self._special_tokens[text] = idx |
|
self._inv_special_tokens[idx] = text |
|
|
|
self._unk_id = self._tokenizer.unk_id() |
|
self._bos_id = self._tokenizer.bos_id() |
|
self._eos_id = self._tokenizer.eos_id() |
|
|
|
for token in [ |
|
bot_token, eot_token, call_start_token, call_end_token, |
|
think_start_token, think_end_token |
|
]: |
|
assert token in self._vocab, f"Token '{token}' not found in tokenizer" |
|
assert token in self._special_tokens, f"Token '{token}' is not a special token" |
|
|
|
for token in [mask_start_token, mask_end_token]: |
|
assert token in self._vocab, f"Token '{token}' not found in tokenizer" |
|
|
|
self._bot_id = self._tokenizer.piece_to_id(bot_token) |
|
self._eot_id = self._tokenizer.piece_to_id(eot_token) |
|
self._call_start_id = self._tokenizer.piece_to_id(call_start_token) |
|
self._call_end_id = self._tokenizer.piece_to_id(call_end_token) |
|
self._think_start_id = self._tokenizer.piece_to_id(think_start_token) |
|
self._think_end_id = self._tokenizer.piece_to_id(think_end_token) |
|
self._mask_start_id = self._tokenizer.piece_to_id(mask_start_token) |
|
self._mask_end_id = self._tokenizer.piece_to_id(mask_end_token) |
|
|
|
self._underline_id = self._tokenizer.piece_to_id("\u2581") |
|
|
|
@property |
|
def vocab(self): |
|
return self._vocab |
|
|
|
@property |
|
def inv_vocab(self): |
|
return self._inv_vocab |
|
|
|
@property |
|
def vocab_size(self): |
|
return self._tokenizer.vocab_size() |
|
|
|
def tokenize(self, text: str) -> List[int]: |
|
return self._tokenizer.encode_as_ids(text) |
|
|
|
def detokenize(self, token_ids: List[int]) -> str: |
|
return self._tokenizer.decode_ids(token_ids) |
|
|
|
|
|
class Tokens: |
|
def __init__(self, input_ids, cu_input_ids, attention_mask, cu_seqlens, max_seq_len) -> None: |
|
self.input_ids = input_ids |
|
self.attention_mask = attention_mask |
|
self.cu_input_ids = cu_input_ids |
|
self.cu_seqlens = cu_seqlens |
|
self.max_seq_len = max_seq_len |
|
def to(self, device): |
|
self.input_ids = self.input_ids.to(device) |
|
self.attention_mask = self.attention_mask.to(device) |
|
self.cu_input_ids = self.cu_input_ids.to(device) |
|
self.cu_seqlens = self.cu_seqlens.to(device) |
|
return self |
|
|
|
class Wrapped_StepChatTokenizer(StepChatTokenizer): |
|
def __call__(self, text, max_length=320, padding="max_length", truncation=True, return_tensors="pt"): |
|
|
|
self.BOS = 1 |
|
self.EOS = 2 |
|
self.PAD = 2 |
|
out_tokens = [] |
|
attn_mask = [] |
|
if len(text) == 0: |
|
part_tokens = [self.BOS] + [self.EOS] |
|
valid_size = len(part_tokens) |
|
if len(part_tokens) < max_length: |
|
part_tokens += [self.PAD] * (max_length - valid_size) |
|
out_tokens.append(part_tokens) |
|
attn_mask.append([1]*valid_size+[0]*(max_length-valid_size)) |
|
else: |
|
for part in text: |
|
part_tokens = self.tokenize(part) |
|
part_tokens = part_tokens[:(max_length - 2)] |
|
part_tokens = [self.BOS] + part_tokens + [self.EOS] |
|
valid_size = len(part_tokens) |
|
if len(part_tokens) < max_length: |
|
part_tokens += [self.PAD] * (max_length - valid_size) |
|
out_tokens.append(part_tokens) |
|
attn_mask.append([1]*valid_size+[0]*(max_length-valid_size)) |
|
|
|
out_tokens = torch.tensor(out_tokens, dtype=torch.long) |
|
attn_mask = torch.tensor(attn_mask, dtype=torch.long) |
|
|
|
|
|
padded_len = 0 |
|
padded_flag = True if padded_len > 0 else False |
|
if padded_flag: |
|
pad_tokens = torch.tensor([[self.PAD] * max_length], device=out_tokens.device) |
|
pad_attn_mask = torch.tensor([[1]*padded_len+[0]*(max_length-padded_len)], device=attn_mask.device) |
|
out_tokens = torch.cat([out_tokens, pad_tokens], dim=0) |
|
attn_mask = torch.cat([attn_mask, pad_attn_mask], dim=0) |
|
|
|
|
|
cu_out_tokens = out_tokens.masked_select(attn_mask != 0).unsqueeze(0) |
|
seqlen = attn_mask.sum(dim=1).tolist() |
|
cu_seqlens = torch.cumsum(torch.tensor([0]+seqlen), 0).to(device=out_tokens.device,dtype=torch.int32) |
|
max_seq_len = max(seqlen) |
|
return Tokens(out_tokens, cu_out_tokens, attn_mask, cu_seqlens, max_seq_len) |
|
|
|
|
|
|
|
def flash_attn_func(q, k, v, dropout_p=0.0, softmax_scale=None, causal=True, |
|
return_attn_probs=False, tp_group_rank=0, tp_group_size=1): |
|
softmax_scale = q.size(-1) ** (-0.5) if softmax_scale is None else softmax_scale |
|
if hasattr(torch.ops.Optimus, "fwd"): |
|
results = torch.ops.Optimus.fwd(q, k, v, None, dropout_p, softmax_scale, causal, return_attn_probs, None, tp_group_rank, tp_group_size)[0] |
|
else: |
|
warnings.warn("Cannot load `torch.ops.Optimus.fwd`. Using `torch.nn.functional.scaled_dot_product_attention` instead.") |
|
results = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True, scale=softmax_scale).transpose(1, 2) |
|
return results |
|
|
|
|
|
class FlashSelfAttention(torch.nn.Module): |
|
def __init__( |
|
self, |
|
attention_dropout=0.0, |
|
): |
|
super().__init__() |
|
self.dropout_p = attention_dropout |
|
|
|
|
|
def forward(self, q, k, v, cu_seqlens=None, max_seq_len=None): |
|
if cu_seqlens is None: |
|
output = flash_attn_func(q, k, v, dropout_p=self.dropout_p) |
|
else: |
|
raise ValueError('cu_seqlens is not supported!') |
|
|
|
return output |
|
|
|
|
|
|
|
def safediv(n, d): |
|
q, r = divmod(n, d) |
|
assert r == 0 |
|
return q |
|
|
|
|
|
class MultiQueryAttention(nn.Module): |
|
def __init__(self, cfg, layer_id=None): |
|
super().__init__() |
|
|
|
self.head_dim = cfg.hidden_size // cfg.num_attention_heads |
|
self.max_seq_len = cfg.seq_length |
|
self.use_flash_attention = cfg.use_flash_attn |
|
assert self.use_flash_attention, 'FlashAttention is required!' |
|
|
|
self.n_groups = cfg.num_attention_groups |
|
self.tp_size = 1 |
|
self.n_local_heads = cfg.num_attention_heads |
|
self.n_local_groups = self.n_groups |
|
|
|
self.wqkv = nn.Linear( |
|
cfg.hidden_size, |
|
cfg.hidden_size + self.head_dim * 2 * self.n_groups, |
|
bias=False, |
|
) |
|
self.wo = nn.Linear( |
|
cfg.hidden_size, |
|
cfg.hidden_size, |
|
bias=False, |
|
) |
|
|
|
assert self.use_flash_attention, 'non-Flash attention not supported yet.' |
|
self.core_attention = FlashSelfAttention(attention_dropout=cfg.attention_dropout) |
|
|
|
self.layer_id = layer_id |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
mask: Optional[torch.Tensor], |
|
cu_seqlens: Optional[torch.Tensor], |
|
max_seq_len: Optional[torch.Tensor], |
|
): |
|
seqlen, bsz, dim = x.shape |
|
xqkv = self.wqkv(x) |
|
|
|
xq, xkv = torch.split( |
|
xqkv, |
|
(dim // self.tp_size, |
|
self.head_dim*2*self.n_groups // self.tp_size |
|
), |
|
dim=-1, |
|
) |
|
|
|
|
|
xq = xq.view(seqlen, bsz, self.n_local_heads, self.head_dim) |
|
xkv = xkv.view(seqlen, bsz, self.n_local_groups, 2 * self.head_dim) |
|
xk, xv = xkv.chunk(2, -1) |
|
|
|
|
|
xq = rearrange(xq, "s b h d -> b s h d") |
|
xk = rearrange(xk, "s b h d -> b s h d") |
|
xv = rearrange(xv, "s b h d -> b s h d") |
|
|
|
q_per_kv = self.n_local_heads // self.n_local_groups |
|
if q_per_kv > 1: |
|
b, s, h, d = xk.size() |
|
if h == 1: |
|
xk = xk.expand(b, s, q_per_kv, d) |
|
xv = xv.expand(b, s, q_per_kv, d) |
|
else: |
|
''' To cover the cases where h > 1, we have |
|
the following implementation, which is equivalent to: |
|
xk = xk.repeat_interleave(q_per_kv, dim=-2) |
|
xv = xv.repeat_interleave(q_per_kv, dim=-2) |
|
but can avoid calling aten::item() that involves cpu. |
|
''' |
|
idx = torch.arange(q_per_kv * h, device=xk.device).reshape(q_per_kv, -1).permute(1, 0).flatten() |
|
xk = torch.index_select(xk.repeat(1, 1, q_per_kv, 1), 2, idx).contiguous() |
|
xv = torch.index_select(xv.repeat(1, 1, q_per_kv, 1), 2, idx).contiguous() |
|
|
|
if self.use_flash_attention: |
|
output = self.core_attention(xq, xk, xv, |
|
cu_seqlens=cu_seqlens, |
|
max_seq_len=max_seq_len) |
|
|
|
output = rearrange(output, "b s h d -> s b (h d)").contiguous() |
|
else: |
|
xq, xk, xv = [ |
|
rearrange(x, "b s ... -> s b ...").contiguous() |
|
for x in (xq, xk, xv) |
|
] |
|
output = self.core_attention(xq, xk, xv, mask) |
|
output = self.wo(output) |
|
return output |
|
|
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__( |
|
self, |
|
cfg, |
|
dim: int, |
|
hidden_dim: int, |
|
layer_id: int, |
|
multiple_of: int=256, |
|
): |
|
super().__init__() |
|
|
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) |
|
def swiglu(x): |
|
x = torch.chunk(x, 2, dim=-1) |
|
return F.silu(x[0]) * x[1] |
|
self.swiglu = swiglu |
|
|
|
self.w1 = nn.Linear( |
|
dim, |
|
2 * hidden_dim, |
|
bias=False, |
|
) |
|
self.w2 = nn.Linear( |
|
hidden_dim, |
|
dim, |
|
bias=False, |
|
) |
|
|
|
def forward(self, x): |
|
x = self.swiglu(self.w1(x)) |
|
output = self.w2(x) |
|
return output |
|
|
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__( |
|
self, cfg, layer_id: int |
|
): |
|
super().__init__() |
|
|
|
self.n_heads = cfg.num_attention_heads |
|
self.dim = cfg.hidden_size |
|
self.head_dim = cfg.hidden_size // cfg.num_attention_heads |
|
self.attention = MultiQueryAttention( |
|
cfg, |
|
layer_id=layer_id, |
|
) |
|
|
|
self.feed_forward = FeedForward( |
|
cfg, |
|
dim=cfg.hidden_size, |
|
hidden_dim=cfg.ffn_hidden_size, |
|
layer_id=layer_id, |
|
) |
|
self.layer_id = layer_id |
|
self.attention_norm = RMSNorm( |
|
cfg.hidden_size, |
|
eps=cfg.layernorm_epsilon, |
|
) |
|
self.ffn_norm = RMSNorm( |
|
cfg.hidden_size, |
|
eps=cfg.layernorm_epsilon, |
|
) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
mask: Optional[torch.Tensor], |
|
cu_seqlens: Optional[torch.Tensor], |
|
max_seq_len: Optional[torch.Tensor], |
|
): |
|
residual = self.attention.forward( |
|
self.attention_norm(x), mask, |
|
cu_seqlens, max_seq_len |
|
) |
|
h = x + residual |
|
ffn_res = self.feed_forward.forward(self.ffn_norm(h)) |
|
out = h + ffn_res |
|
return out |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__( |
|
self, |
|
config, |
|
max_seq_size=8192, |
|
): |
|
super().__init__() |
|
self.num_layers = config.num_layers |
|
self.layers = self._build_layers(config) |
|
|
|
def _build_layers(self, config): |
|
layers = torch.nn.ModuleList() |
|
for layer_id in range(self.num_layers): |
|
layers.append( |
|
TransformerBlock( |
|
config, |
|
layer_id=layer_id + 1 , |
|
) |
|
) |
|
return layers |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask, |
|
cu_seqlens=None, |
|
max_seq_len=None, |
|
): |
|
|
|
if max_seq_len is not None and not isinstance(max_seq_len, torch.Tensor): |
|
max_seq_len = torch.tensor(max_seq_len, dtype=torch.int32, device="cpu") |
|
|
|
for lid, layer in enumerate(self.layers): |
|
hidden_states = layer( |
|
hidden_states, |
|
attention_mask, |
|
cu_seqlens, |
|
max_seq_len, |
|
) |
|
return hidden_states |
|
|
|
|
|
class Step1Model(PreTrainedModel): |
|
config_class=PretrainedConfig |
|
@with_empty_init |
|
def __init__( |
|
self, |
|
config, |
|
): |
|
super().__init__(config) |
|
self.tok_embeddings = LLaMaEmbedding(config) |
|
self.transformer = Transformer(config) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
): |
|
|
|
hidden_states = self.tok_embeddings(input_ids) |
|
|
|
hidden_states = self.transformer( |
|
hidden_states, |
|
attention_mask, |
|
) |
|
return hidden_states |
|
|
|
|
|
|
|
class STEP1TextEncoder(torch.nn.Module): |
|
def __init__(self, model_dir, max_length=320): |
|
super(STEP1TextEncoder, self).__init__() |
|
self.max_length = max_length |
|
self.text_tokenizer = Wrapped_StepChatTokenizer(os.path.join(model_dir, 'step1_chat_tokenizer.model')) |
|
text_encoder = Step1Model.from_pretrained(model_dir) |
|
self.text_encoder = text_encoder.eval().to(torch.bfloat16) |
|
|
|
@staticmethod |
|
def from_pretrained(path, torch_dtype=torch.bfloat16): |
|
model = STEP1TextEncoder(path).to(torch_dtype) |
|
return model |
|
|
|
@torch.no_grad |
|
def forward(self, prompts, with_mask=True, max_length=None, device="cuda"): |
|
self.device = device |
|
with torch.no_grad(), torch.amp.autocast(dtype=torch.bfloat16, device_type=device): |
|
if type(prompts) is str: |
|
prompts = [prompts] |
|
|
|
txt_tokens = self.text_tokenizer( |
|
prompts, max_length=max_length or self.max_length, padding="max_length", truncation=True, return_tensors="pt" |
|
) |
|
y = self.text_encoder( |
|
txt_tokens.input_ids.to(self.device), |
|
attention_mask=txt_tokens.attention_mask.to(self.device) if with_mask else None |
|
) |
|
y_mask = txt_tokens.attention_mask |
|
return y.transpose(0,1), y_mask |
|
|
|
|