|
import torch |
|
from einops import rearrange, repeat |
|
from .flux_dit import RoPEEmbedding, TimestepEmbeddings, FluxJointTransformerBlock, FluxSingleTransformerBlock, RMSNorm |
|
from .utils import hash_state_dict_keys, init_weights_on_device |
|
|
|
|
|
|
|
class FluxControlNet(torch.nn.Module): |
|
def __init__(self, disable_guidance_embedder=False, num_joint_blocks=5, num_single_blocks=10, num_mode=0, mode_dict={}, additional_input_dim=0): |
|
super().__init__() |
|
self.pos_embedder = RoPEEmbedding(3072, 10000, [16, 56, 56]) |
|
self.time_embedder = TimestepEmbeddings(256, 3072) |
|
self.guidance_embedder = None if disable_guidance_embedder else TimestepEmbeddings(256, 3072) |
|
self.pooled_text_embedder = torch.nn.Sequential(torch.nn.Linear(768, 3072), torch.nn.SiLU(), torch.nn.Linear(3072, 3072)) |
|
self.context_embedder = torch.nn.Linear(4096, 3072) |
|
self.x_embedder = torch.nn.Linear(64, 3072) |
|
|
|
self.blocks = torch.nn.ModuleList([FluxJointTransformerBlock(3072, 24) for _ in range(num_joint_blocks)]) |
|
self.single_blocks = torch.nn.ModuleList([FluxSingleTransformerBlock(3072, 24) for _ in range(num_single_blocks)]) |
|
|
|
self.controlnet_blocks = torch.nn.ModuleList([torch.nn.Linear(3072, 3072) for _ in range(num_joint_blocks)]) |
|
self.controlnet_single_blocks = torch.nn.ModuleList([torch.nn.Linear(3072, 3072) for _ in range(num_single_blocks)]) |
|
|
|
self.mode_dict = mode_dict |
|
self.controlnet_mode_embedder = torch.nn.Embedding(num_mode, 3072) if len(mode_dict) > 0 else None |
|
self.controlnet_x_embedder = torch.nn.Linear(64 + additional_input_dim, 3072) |
|
|
|
|
|
def prepare_image_ids(self, latents): |
|
batch_size, _, height, width = latents.shape |
|
latent_image_ids = torch.zeros(height // 2, width // 2, 3) |
|
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] |
|
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] |
|
|
|
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape |
|
|
|
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) |
|
latent_image_ids = latent_image_ids.reshape( |
|
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels |
|
) |
|
latent_image_ids = latent_image_ids.to(device=latents.device, dtype=latents.dtype) |
|
|
|
return latent_image_ids |
|
|
|
|
|
def patchify(self, hidden_states): |
|
hidden_states = rearrange(hidden_states, "B C (H P) (W Q) -> B (H W) (C P Q)", P=2, Q=2) |
|
return hidden_states |
|
|
|
|
|
def align_res_stack_to_original_blocks(self, res_stack, num_blocks, hidden_states): |
|
if len(res_stack) == 0: |
|
return [torch.zeros_like(hidden_states)] * num_blocks |
|
interval = (num_blocks + len(res_stack) - 1) // len(res_stack) |
|
aligned_res_stack = [res_stack[block_id // interval] for block_id in range(num_blocks)] |
|
return aligned_res_stack |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
controlnet_conditioning, |
|
timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, image_ids=None, |
|
processor_id=None, |
|
tiled=False, tile_size=128, tile_stride=64, |
|
**kwargs |
|
): |
|
if image_ids is None: |
|
image_ids = self.prepare_image_ids(hidden_states) |
|
|
|
conditioning = self.time_embedder(timestep, hidden_states.dtype) + self.pooled_text_embedder(pooled_prompt_emb) |
|
if self.guidance_embedder is not None: |
|
guidance = guidance * 1000 |
|
conditioning = conditioning + self.guidance_embedder(guidance, hidden_states.dtype) |
|
prompt_emb = self.context_embedder(prompt_emb) |
|
if self.controlnet_mode_embedder is not None: |
|
processor_id = torch.tensor([self.mode_dict[processor_id]], dtype=torch.int) |
|
processor_id = repeat(processor_id, "D -> B D", B=1).to(text_ids.device) |
|
prompt_emb = torch.concat([self.controlnet_mode_embedder(processor_id), prompt_emb], dim=1) |
|
text_ids = torch.cat([text_ids[:, :1], text_ids], dim=1) |
|
image_rotary_emb = self.pos_embedder(torch.cat((text_ids, image_ids), dim=1)) |
|
|
|
hidden_states = self.patchify(hidden_states) |
|
hidden_states = self.x_embedder(hidden_states) |
|
controlnet_conditioning = self.patchify(controlnet_conditioning) |
|
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_conditioning) |
|
|
|
controlnet_res_stack = [] |
|
for block, controlnet_block in zip(self.blocks, self.controlnet_blocks): |
|
hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb) |
|
controlnet_res_stack.append(controlnet_block(hidden_states)) |
|
|
|
controlnet_single_res_stack = [] |
|
hidden_states = torch.cat([prompt_emb, hidden_states], dim=1) |
|
for block, controlnet_block in zip(self.single_blocks, self.controlnet_single_blocks): |
|
hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb) |
|
controlnet_single_res_stack.append(controlnet_block(hidden_states[:, prompt_emb.shape[1]:])) |
|
|
|
controlnet_res_stack = self.align_res_stack_to_original_blocks(controlnet_res_stack, 19, hidden_states[:, prompt_emb.shape[1]:]) |
|
controlnet_single_res_stack = self.align_res_stack_to_original_blocks(controlnet_single_res_stack, 38, hidden_states[:, prompt_emb.shape[1]:]) |
|
|
|
return controlnet_res_stack, controlnet_single_res_stack |
|
|
|
|
|
@staticmethod |
|
def state_dict_converter(): |
|
return FluxControlNetStateDictConverter() |
|
|
|
def quantize(self): |
|
def cast_to(weight, dtype=None, device=None, copy=False): |
|
if device is None or weight.device == device: |
|
if not copy: |
|
if dtype is None or weight.dtype == dtype: |
|
return weight |
|
return weight.to(dtype=dtype, copy=copy) |
|
|
|
r = torch.empty_like(weight, dtype=dtype, device=device) |
|
r.copy_(weight) |
|
return r |
|
|
|
def cast_weight(s, input=None, dtype=None, device=None): |
|
if input is not None: |
|
if dtype is None: |
|
dtype = input.dtype |
|
if device is None: |
|
device = input.device |
|
weight = cast_to(s.weight, dtype, device) |
|
return weight |
|
|
|
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None): |
|
if input is not None: |
|
if dtype is None: |
|
dtype = input.dtype |
|
if bias_dtype is None: |
|
bias_dtype = dtype |
|
if device is None: |
|
device = input.device |
|
bias = None |
|
weight = cast_to(s.weight, dtype, device) |
|
bias = cast_to(s.bias, bias_dtype, device) |
|
return weight, bias |
|
|
|
class quantized_layer: |
|
class QLinear(torch.nn.Linear): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def forward(self,input,**kwargs): |
|
weight,bias= cast_bias_weight(self,input) |
|
return torch.nn.functional.linear(input,weight,bias) |
|
|
|
class QRMSNorm(torch.nn.Module): |
|
def __init__(self, module): |
|
super().__init__() |
|
self.module = module |
|
|
|
def forward(self,hidden_states,**kwargs): |
|
weight= cast_weight(self.module,hidden_states) |
|
input_dtype = hidden_states.dtype |
|
variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.module.eps) |
|
hidden_states = hidden_states.to(input_dtype) * weight |
|
return hidden_states |
|
|
|
class QEmbedding(torch.nn.Embedding): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def forward(self,input,**kwargs): |
|
weight= cast_weight(self,input) |
|
return torch.nn.functional.embedding( |
|
input, weight, self.padding_idx, self.max_norm, |
|
self.norm_type, self.scale_grad_by_freq, self.sparse) |
|
|
|
def replace_layer(model): |
|
for name, module in model.named_children(): |
|
if isinstance(module,quantized_layer.QRMSNorm): |
|
continue |
|
if isinstance(module, torch.nn.Linear): |
|
with init_weights_on_device(): |
|
new_layer = quantized_layer.QLinear(module.in_features,module.out_features) |
|
new_layer.weight = module.weight |
|
if module.bias is not None: |
|
new_layer.bias = module.bias |
|
setattr(model, name, new_layer) |
|
elif isinstance(module, RMSNorm): |
|
if hasattr(module,"quantized"): |
|
continue |
|
module.quantized= True |
|
new_layer = quantized_layer.QRMSNorm(module) |
|
setattr(model, name, new_layer) |
|
elif isinstance(module,torch.nn.Embedding): |
|
rows, cols = module.weight.shape |
|
new_layer = quantized_layer.QEmbedding( |
|
num_embeddings=rows, |
|
embedding_dim=cols, |
|
_weight=module.weight, |
|
|
|
padding_idx=module.padding_idx, |
|
max_norm=module.max_norm, |
|
norm_type=module.norm_type, |
|
scale_grad_by_freq=module.scale_grad_by_freq, |
|
sparse=module.sparse) |
|
setattr(model, name, new_layer) |
|
else: |
|
replace_layer(module) |
|
|
|
replace_layer(self) |
|
|
|
|
|
|
|
class FluxControlNetStateDictConverter: |
|
def __init__(self): |
|
pass |
|
|
|
def from_diffusers(self, state_dict): |
|
hash_value = hash_state_dict_keys(state_dict) |
|
global_rename_dict = { |
|
"context_embedder": "context_embedder", |
|
"x_embedder": "x_embedder", |
|
"time_text_embed.timestep_embedder.linear_1": "time_embedder.timestep_embedder.0", |
|
"time_text_embed.timestep_embedder.linear_2": "time_embedder.timestep_embedder.2", |
|
"time_text_embed.guidance_embedder.linear_1": "guidance_embedder.timestep_embedder.0", |
|
"time_text_embed.guidance_embedder.linear_2": "guidance_embedder.timestep_embedder.2", |
|
"time_text_embed.text_embedder.linear_1": "pooled_text_embedder.0", |
|
"time_text_embed.text_embedder.linear_2": "pooled_text_embedder.2", |
|
"norm_out.linear": "final_norm_out.linear", |
|
"proj_out": "final_proj_out", |
|
} |
|
rename_dict = { |
|
"proj_out": "proj_out", |
|
"norm1.linear": "norm1_a.linear", |
|
"norm1_context.linear": "norm1_b.linear", |
|
"attn.to_q": "attn.a_to_q", |
|
"attn.to_k": "attn.a_to_k", |
|
"attn.to_v": "attn.a_to_v", |
|
"attn.to_out.0": "attn.a_to_out", |
|
"attn.add_q_proj": "attn.b_to_q", |
|
"attn.add_k_proj": "attn.b_to_k", |
|
"attn.add_v_proj": "attn.b_to_v", |
|
"attn.to_add_out": "attn.b_to_out", |
|
"ff.net.0.proj": "ff_a.0", |
|
"ff.net.2": "ff_a.2", |
|
"ff_context.net.0.proj": "ff_b.0", |
|
"ff_context.net.2": "ff_b.2", |
|
"attn.norm_q": "attn.norm_q_a", |
|
"attn.norm_k": "attn.norm_k_a", |
|
"attn.norm_added_q": "attn.norm_q_b", |
|
"attn.norm_added_k": "attn.norm_k_b", |
|
} |
|
rename_dict_single = { |
|
"attn.to_q": "a_to_q", |
|
"attn.to_k": "a_to_k", |
|
"attn.to_v": "a_to_v", |
|
"attn.norm_q": "norm_q_a", |
|
"attn.norm_k": "norm_k_a", |
|
"norm.linear": "norm.linear", |
|
"proj_mlp": "proj_in_besides_attn", |
|
"proj_out": "proj_out", |
|
} |
|
state_dict_ = {} |
|
for name, param in state_dict.items(): |
|
if name.endswith(".weight") or name.endswith(".bias"): |
|
suffix = ".weight" if name.endswith(".weight") else ".bias" |
|
prefix = name[:-len(suffix)] |
|
if prefix in global_rename_dict: |
|
state_dict_[global_rename_dict[prefix] + suffix] = param |
|
elif prefix.startswith("transformer_blocks."): |
|
names = prefix.split(".") |
|
names[0] = "blocks" |
|
middle = ".".join(names[2:]) |
|
if middle in rename_dict: |
|
name_ = ".".join(names[:2] + [rename_dict[middle]] + [suffix[1:]]) |
|
state_dict_[name_] = param |
|
elif prefix.startswith("single_transformer_blocks."): |
|
names = prefix.split(".") |
|
names[0] = "single_blocks" |
|
middle = ".".join(names[2:]) |
|
if middle in rename_dict_single: |
|
name_ = ".".join(names[:2] + [rename_dict_single[middle]] + [suffix[1:]]) |
|
state_dict_[name_] = param |
|
else: |
|
state_dict_[name] = param |
|
else: |
|
state_dict_[name] = param |
|
for name in list(state_dict_.keys()): |
|
if ".proj_in_besides_attn." in name: |
|
name_ = name.replace(".proj_in_besides_attn.", ".to_qkv_mlp.") |
|
param = torch.concat([ |
|
state_dict_[name.replace(".proj_in_besides_attn.", f".a_to_q.")], |
|
state_dict_[name.replace(".proj_in_besides_attn.", f".a_to_k.")], |
|
state_dict_[name.replace(".proj_in_besides_attn.", f".a_to_v.")], |
|
state_dict_[name], |
|
], dim=0) |
|
state_dict_[name_] = param |
|
state_dict_.pop(name.replace(".proj_in_besides_attn.", f".a_to_q.")) |
|
state_dict_.pop(name.replace(".proj_in_besides_attn.", f".a_to_k.")) |
|
state_dict_.pop(name.replace(".proj_in_besides_attn.", f".a_to_v.")) |
|
state_dict_.pop(name) |
|
for name in list(state_dict_.keys()): |
|
for component in ["a", "b"]: |
|
if f".{component}_to_q." in name: |
|
name_ = name.replace(f".{component}_to_q.", f".{component}_to_qkv.") |
|
param = torch.concat([ |
|
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")], |
|
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_k.")], |
|
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_v.")], |
|
], dim=0) |
|
state_dict_[name_] = param |
|
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_q.")) |
|
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_k.")) |
|
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_v.")) |
|
if hash_value == "78d18b9101345ff695f312e7e62538c0": |
|
extra_kwargs = {"num_mode": 10, "mode_dict": {"canny": 0, "tile": 1, "depth": 2, "blur": 3, "pose": 4, "gray": 5, "lq": 6}} |
|
elif hash_value == "b001c89139b5f053c715fe772362dd2a": |
|
extra_kwargs = {"num_single_blocks": 0} |
|
elif hash_value == "52357cb26250681367488a8954c271e8": |
|
extra_kwargs = {"num_joint_blocks": 6, "num_single_blocks": 0, "additional_input_dim": 4} |
|
elif hash_value == "0cfd1740758423a2a854d67c136d1e8c": |
|
extra_kwargs = {"num_joint_blocks": 4, "num_single_blocks": 1} |
|
else: |
|
extra_kwargs = {} |
|
return state_dict_, extra_kwargs |
|
|
|
|
|
def from_civitai(self, state_dict): |
|
return self.from_diffusers(state_dict) |
|
|