victorisgeek
commited on
Upload 3 files
Browse files- image_test.py +107 -0
- image_test_multi_face.py +146 -0
- video_test.py +90 -0
image_test.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import paddle
|
3 |
+
import argparse
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
from models.model import FaceSwap, l2_norm
|
8 |
+
from models.arcface import IRBlock, ResNet
|
9 |
+
from utils.align_face import back_matrix, dealign, align_img
|
10 |
+
from utils.util import paddle2cv, cv2paddle
|
11 |
+
from utils.prepare_data import LandmarkModel
|
12 |
+
|
13 |
+
def get_id_emb(id_net, id_img_path):
|
14 |
+
id_img = cv2.imread(id_img_path)
|
15 |
+
|
16 |
+
id_img = cv2.resize(id_img, (112, 112))
|
17 |
+
id_img = cv2paddle(id_img)
|
18 |
+
mean = paddle.to_tensor([[0.485, 0.456, 0.406]]).reshape((1, 3, 1, 1))
|
19 |
+
std = paddle.to_tensor([[0.229, 0.224, 0.225]]).reshape((1, 3, 1, 1))
|
20 |
+
id_img = (id_img - mean) / std
|
21 |
+
|
22 |
+
id_emb, id_feature = id_net(id_img)
|
23 |
+
id_emb = l2_norm(id_emb)
|
24 |
+
|
25 |
+
return id_emb, id_feature
|
26 |
+
|
27 |
+
|
28 |
+
def image_test(args):
|
29 |
+
paddle.set_device("gpu" if args.use_gpu else 'cpu')
|
30 |
+
faceswap_model = FaceSwap(args.use_gpu)
|
31 |
+
|
32 |
+
id_net = ResNet(block=IRBlock, layers=[3, 4, 23, 3])
|
33 |
+
id_net.set_dict(paddle.load('./checkpoints/arcface.pdparams'))
|
34 |
+
|
35 |
+
id_net.eval()
|
36 |
+
|
37 |
+
weight = paddle.load('./checkpoints/MobileFaceSwap_224.pdparams')
|
38 |
+
|
39 |
+
base_path = args.source_img_path.replace('.png', '').replace('.jpg', '').replace('.jpeg', '')
|
40 |
+
id_emb, id_feature = get_id_emb(id_net, base_path + '_aligned.png')
|
41 |
+
|
42 |
+
faceswap_model.set_model_param(id_emb, id_feature, model_weight=weight)
|
43 |
+
faceswap_model.eval()
|
44 |
+
|
45 |
+
if os.path.isfile(args.target_img_path):
|
46 |
+
img_list = [args.target_img_path]
|
47 |
+
else:
|
48 |
+
img_list = [os.path.join(args.target_img_path, x) for x in os.listdir(args.target_img_path) if x.endswith('png') or x.endswith('jpg') or x.endswith('jpeg')]
|
49 |
+
for img_path in img_list:
|
50 |
+
|
51 |
+
origin_att_img = cv2.imread(img_path)
|
52 |
+
base_path = img_path.replace('.png', '').replace('.jpg', '').replace('.jpeg', '')
|
53 |
+
att_img = cv2.imread(base_path + '_aligned.png')
|
54 |
+
att_img = cv2paddle(att_img)
|
55 |
+
import time
|
56 |
+
|
57 |
+
res, mask = faceswap_model(att_img)
|
58 |
+
res = paddle2cv(res)
|
59 |
+
|
60 |
+
if args.merge_result:
|
61 |
+
back_matrix = np.load(base_path + '_back.npy')
|
62 |
+
mask = np.transpose(mask[0].numpy(), (1, 2, 0))
|
63 |
+
res = dealign(res, origin_att_img, back_matrix, mask)
|
64 |
+
cv2.imwrite(os.path.join(args.output_dir, os.path.basename(img_path)), res)
|
65 |
+
|
66 |
+
|
67 |
+
def face_align(landmarkModel, image_path, merge_result=False, image_size=224):
|
68 |
+
if os.path.isfile(image_path):
|
69 |
+
img_list = [image_path]
|
70 |
+
else:
|
71 |
+
img_list = [os.path.join(image_path, x) for x in os.listdir(image_path) if x.endswith('png') or x.endswith('jpg') or x.endswith('jpeg')]
|
72 |
+
for path in img_list:
|
73 |
+
img = cv2.imread(path)
|
74 |
+
landmark = landmarkModel.get(img)
|
75 |
+
if landmark is not None:
|
76 |
+
base_path = path.replace('.png', '').replace('.jpg', '').replace('.jpeg', '')
|
77 |
+
aligned_img, back_matrix = align_img(img, landmark, image_size)
|
78 |
+
# np.save(base_path + '.npy', landmark)
|
79 |
+
cv2.imwrite(base_path + '_aligned.png', aligned_img)
|
80 |
+
if merge_result:
|
81 |
+
np.save(base_path + '_back.npy', back_matrix)
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == '__main__':
|
85 |
+
|
86 |
+
parser = argparse.ArgumentParser(description="MobileFaceSwap Test")
|
87 |
+
parser.add_argument('--source_img_path', type=str, help='path to the source image')
|
88 |
+
parser.add_argument('--target_img_path', type=str, help='path to the target images')
|
89 |
+
parser.add_argument('--output_dir', type=str, default='results', help='path to the output dirs')
|
90 |
+
parser.add_argument('--image_size', type=int, default=224,help='size of the test images (224 SimSwap | 256 FaceShifter)')
|
91 |
+
parser.add_argument('--merge_result', type=bool, default=True, help='output with whole image')
|
92 |
+
parser.add_argument('--need_align', type=bool, default=True, help='need to align the image')
|
93 |
+
parser.add_argument('--use_gpu', type=bool, default=False)
|
94 |
+
|
95 |
+
|
96 |
+
args = parser.parse_args()
|
97 |
+
if args.need_align:
|
98 |
+
landmarkModel = LandmarkModel(name='landmarks')
|
99 |
+
landmarkModel.prepare(ctx_id= 0, det_thresh=0.6, det_size=(640,640))
|
100 |
+
face_align(landmarkModel, args.source_img_path)
|
101 |
+
face_align(landmarkModel, args.target_img_path, args.merge_result, args.image_size)
|
102 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
103 |
+
image_test(args)
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
image_test_multi_face.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import paddle
|
3 |
+
import argparse
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
from models.model import FaceSwap, l2_norm
|
8 |
+
from models.arcface import IRBlock, ResNet
|
9 |
+
from utils.align_face import back_matrix, dealign, align_img
|
10 |
+
from utils.util import paddle2cv, cv2paddle
|
11 |
+
from utils.prepare_data import LandmarkModel
|
12 |
+
|
13 |
+
def get_id_emb(id_net, id_img_path):
|
14 |
+
id_img = cv2.imread(id_img_path)
|
15 |
+
|
16 |
+
id_img = cv2.resize(id_img, (112, 112))
|
17 |
+
id_img = cv2paddle(id_img)
|
18 |
+
mean = paddle.to_tensor([[0.485, 0.456, 0.406]]).reshape((1, 3, 1, 1))
|
19 |
+
std = paddle.to_tensor([[0.229, 0.224, 0.225]]).reshape((1, 3, 1, 1))
|
20 |
+
id_img = (id_img - mean) / std
|
21 |
+
|
22 |
+
id_emb, id_feature = id_net(id_img)
|
23 |
+
id_emb = l2_norm(id_emb)
|
24 |
+
|
25 |
+
return id_emb, id_feature
|
26 |
+
|
27 |
+
def get_id_emb_from_image(id_net, id_img):
|
28 |
+
id_img = cv2.resize(id_img, (112, 112))
|
29 |
+
id_img = cv2paddle(id_img)
|
30 |
+
mean = paddle.to_tensor([[0.485, 0.456, 0.406]]).reshape((1, 3, 1, 1))
|
31 |
+
std = paddle.to_tensor([[0.229, 0.224, 0.225]]).reshape((1, 3, 1, 1))
|
32 |
+
id_img = (id_img - mean) / std
|
33 |
+
id_emb, id_feature = id_net(id_img)
|
34 |
+
id_emb = l2_norm(id_emb)
|
35 |
+
|
36 |
+
return id_emb, id_feature
|
37 |
+
|
38 |
+
def image_test_multi_face(args, source_aligned_images, target_aligned_images):
|
39 |
+
#paddle.set_device("gpu" if args.use_gpu else 'cpu')
|
40 |
+
paddle.set_device("gpu" if args.use_gpu else 'cpu')
|
41 |
+
faceswap_model = FaceSwap(args.use_gpu)
|
42 |
+
|
43 |
+
id_net = ResNet(block=IRBlock, layers=[3, 4, 23, 3])
|
44 |
+
id_net.set_dict(paddle.load('./checkpoints/arcface.pdparams'))
|
45 |
+
|
46 |
+
id_net.eval()
|
47 |
+
|
48 |
+
weight = paddle.load('./checkpoints/MobileFaceSwap_224.pdparams')
|
49 |
+
|
50 |
+
#target_path = args.target_img_path.replace('.png', '').replace('.jpg', '').replace('.jpeg', '')
|
51 |
+
|
52 |
+
start_idx = args.target_img_path.rfind('/')
|
53 |
+
if start_idx > 0:
|
54 |
+
target_name = args.target_img_path[args.target_img_path.rfind('/'):]
|
55 |
+
else:
|
56 |
+
target_name = args.target_img_path
|
57 |
+
origin_att_img = cv2.imread(args.target_img_path)
|
58 |
+
#id_emb, id_feature = get_id_emb(id_net, base_path + '_aligned.png')
|
59 |
+
|
60 |
+
|
61 |
+
for idx, target_aligned_image in enumerate(target_aligned_images):
|
62 |
+
id_emb, id_feature = get_id_emb_from_image(id_net, source_aligned_images[idx % len(source_aligned_images)][0])
|
63 |
+
faceswap_model.set_model_param(id_emb, id_feature, model_weight=weight)
|
64 |
+
faceswap_model.eval()
|
65 |
+
#print(target_aligned_image.shape)
|
66 |
+
|
67 |
+
att_img = cv2paddle(target_aligned_image[0])
|
68 |
+
#import time
|
69 |
+
#start = time.perf_counter()
|
70 |
+
|
71 |
+
res, mask = faceswap_model(att_img)
|
72 |
+
#print('process time :{}', time.perf_counter() - start)
|
73 |
+
res = paddle2cv(res)
|
74 |
+
|
75 |
+
#dest[landmarks[idx][0]:landmarks[idx][1],:] =
|
76 |
+
|
77 |
+
back_matrix = target_aligned_images[idx % len(target_aligned_images)][1]
|
78 |
+
mask = np.transpose(mask[0].numpy(), (1, 2, 0))
|
79 |
+
origin_att_img = dealign(res, origin_att_img, back_matrix, mask)
|
80 |
+
'''
|
81 |
+
if args.merge_result:
|
82 |
+
back_matrix = np.load(base_path + '_back.npy')
|
83 |
+
mask = np.transpose(mask[0].numpy(), (1, 2, 0))
|
84 |
+
res = dealign(res, origin_att_img, back_matrix, mask)
|
85 |
+
'''
|
86 |
+
cv2.imwrite(os.path.join(args.output_dir, os.path.basename(target_name.format(idx))), origin_att_img)
|
87 |
+
|
88 |
+
|
89 |
+
def face_align(landmarkModel, image_path, merge_result=False, image_size=224):
|
90 |
+
if os.path.isfile(image_path):
|
91 |
+
img_list = [image_path]
|
92 |
+
else:
|
93 |
+
img_list = [os.path.join(image_path, x) for x in os.listdir(image_path) if x.endswith('png') or x.endswith('jpg') or x.endswith('jpeg')]
|
94 |
+
for path in img_list:
|
95 |
+
img = cv2.imread(path)
|
96 |
+
landmark = landmarkModel.get(img)
|
97 |
+
if landmark is not None:
|
98 |
+
base_path = path.replace('.png', '').replace('.jpg', '').replace('.jpeg', '')
|
99 |
+
aligned_img, back_matrix = align_img(img, landmark, image_size)
|
100 |
+
# np.save(base_path + '.npy', landmark)
|
101 |
+
cv2.imwrite(base_path + '_aligned.png', aligned_img)
|
102 |
+
if merge_result:
|
103 |
+
np.save(base_path + '_back.npy', back_matrix)
|
104 |
+
|
105 |
+
def faces_align(landmarkModel, image_path, image_size=224):
|
106 |
+
aligned_imgs =[]
|
107 |
+
if os.path.isfile(image_path):
|
108 |
+
img_list = [image_path]
|
109 |
+
else:
|
110 |
+
img_list = [os.path.join(image_path, x) for x in os.listdir(image_path) if x.endswith('png') or x.endswith('jpg') or x.endswith('jpeg')]
|
111 |
+
for path in img_list:
|
112 |
+
img = cv2.imread(path)
|
113 |
+
landmarks = landmarkModel.gets(img)
|
114 |
+
for landmark in landmarks:
|
115 |
+
if landmark is not None:
|
116 |
+
aligned_img, back_matrix = align_img(img, landmark, image_size)
|
117 |
+
aligned_imgs.append([aligned_img, back_matrix])
|
118 |
+
return aligned_imgs
|
119 |
+
|
120 |
+
|
121 |
+
if __name__ == '__main__':
|
122 |
+
|
123 |
+
parser = argparse.ArgumentParser(description="MobileFaceSwap Test")
|
124 |
+
parser.add_argument('--source_img_path', type=str, help='path to the source image')
|
125 |
+
parser.add_argument('--target_img_path', type=str, help='path to the target images')
|
126 |
+
parser.add_argument('--output_dir', type=str, default='results', help='path to the output dirs')
|
127 |
+
parser.add_argument('--image_size', type=int, default=224,help='size of the test images (224 SimSwap | 256 FaceShifter)')
|
128 |
+
parser.add_argument('--merge_result', type=bool, default=True, help='output with whole image')
|
129 |
+
parser.add_argument('--need_align', type=bool, default=True, help='need to align the image')
|
130 |
+
parser.add_argument('--use_gpu', type=bool, default=False)
|
131 |
+
|
132 |
+
|
133 |
+
args = parser.parse_args()
|
134 |
+
if args.need_align:
|
135 |
+
landmarkModel = LandmarkModel(name='landmarks')
|
136 |
+
landmarkModel.prepare(ctx_id= 0, det_thresh=0.6, det_size=(640,640))
|
137 |
+
source_aligned_images = faces_align(landmarkModel, args.source_img_path)
|
138 |
+
target_aligned_images = faces_align(landmarkModel, args.target_img_path, args.image_size)
|
139 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
140 |
+
image_test_multi_face(args, source_aligned_images, target_aligned_images)
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
|
video_test.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import paddle
|
3 |
+
import argparse
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
from models.model import FaceSwap, l2_norm
|
8 |
+
from models.arcface import IRBlock, ResNet
|
9 |
+
from utils.align_face import back_matrix, dealign, align_img
|
10 |
+
from utils.util import paddle2cv, cv2paddle
|
11 |
+
from utils.prepare_data import LandmarkModel
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
def get_id_emb(id_net, id_img):
|
15 |
+
id_img = cv2.resize(id_img, (112, 112))
|
16 |
+
id_img = cv2paddle(id_img)
|
17 |
+
mean = paddle.to_tensor([[0.485, 0.456, 0.406]]).reshape((1, 3, 1, 1))
|
18 |
+
std = paddle.to_tensor([[0.229, 0.224, 0.225]]).reshape((1, 3, 1, 1))
|
19 |
+
id_img = (id_img - mean) / std
|
20 |
+
|
21 |
+
id_emb, id_feature = id_net(id_img)
|
22 |
+
id_emb = l2_norm(id_emb)
|
23 |
+
|
24 |
+
return id_emb, id_feature
|
25 |
+
|
26 |
+
|
27 |
+
def video_test(args):
|
28 |
+
|
29 |
+
paddle.set_device("gpu" if args.use_gpu else 'cpu')
|
30 |
+
faceswap_model = FaceSwap(args.use_gpu)
|
31 |
+
|
32 |
+
id_net = ResNet(block=IRBlock, layers=[3, 4, 23, 3])
|
33 |
+
id_net.set_dict(paddle.load('./checkpoints/arcface.pdparams'))
|
34 |
+
|
35 |
+
id_net.eval()
|
36 |
+
|
37 |
+
weight = paddle.load('./checkpoints/MobileFaceSwap_224.pdparams')
|
38 |
+
|
39 |
+
landmarkModel = LandmarkModel(name='landmarks')
|
40 |
+
landmarkModel.prepare(ctx_id= 0, det_thresh=0.6, det_size=(640,640))
|
41 |
+
id_img = cv2.imread(args.source_img_path)
|
42 |
+
#人脸检测
|
43 |
+
landmark = landmarkModel.get(id_img)
|
44 |
+
if landmark is None:
|
45 |
+
print('**** No Face Detect Error ****')
|
46 |
+
exit()
|
47 |
+
aligned_id_img, _ = align_img(id_img, landmark)
|
48 |
+
|
49 |
+
id_emb, id_feature = get_id_emb(id_net, aligned_id_img)
|
50 |
+
|
51 |
+
faceswap_model.set_model_param(id_emb, id_feature, model_weight=weight)
|
52 |
+
faceswap_model.eval()
|
53 |
+
|
54 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
55 |
+
cap = cv2.VideoCapture()
|
56 |
+
cap.open(args.target_video_path)
|
57 |
+
videoWriter = cv2.VideoWriter(os.path.join(args.output_path, os.path.basename(args.target_video_path)), fourcc, int(cap.get(cv2.CAP_PROP_FPS)), (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
|
58 |
+
all_f = cap.get(cv2.CAP_PROP_FRAME_COUNT)
|
59 |
+
for i in tqdm(range(int(all_f))):
|
60 |
+
ret, frame = cap.read()
|
61 |
+
landmark = landmarkModel.get(frame)
|
62 |
+
if landmark is not None:
|
63 |
+
att_img, back_matrix = align_img(frame, landmark)
|
64 |
+
att_img = cv2paddle(att_img)
|
65 |
+
res, mask = faceswap_model(att_img)
|
66 |
+
res = paddle2cv(res)
|
67 |
+
mask = np.transpose(mask[0].numpy(), (1, 2, 0))
|
68 |
+
res = dealign(res, frame, back_matrix, mask)
|
69 |
+
frame = res
|
70 |
+
else:
|
71 |
+
print('**** No Face Detect Error ****')
|
72 |
+
videoWriter.write(frame)
|
73 |
+
cap.release()
|
74 |
+
videoWriter.release()
|
75 |
+
|
76 |
+
|
77 |
+
if __name__ == '__main__':
|
78 |
+
|
79 |
+
parser = argparse.ArgumentParser(description="MobileFaceSwap Test")
|
80 |
+
|
81 |
+
parser = argparse.ArgumentParser(description="MobileFaceSwap Test")
|
82 |
+
parser.add_argument('--source_img_path', type=str, help='path to the source image')
|
83 |
+
parser.add_argument('--target_video_path', type=str, help='path to the target video')
|
84 |
+
parser.add_argument('--output_path', type=str, default='results', help='path to the output videos')
|
85 |
+
parser.add_argument('--image_size', type=int, default=224,help='size of the test images (224 SimSwap | 256 FaceShifter)')
|
86 |
+
parser.add_argument('--merge_result', type=bool, default=True, help='output with whole image')
|
87 |
+
parser.add_argument('--use_gpu', type=bool, default=False)
|
88 |
+
|
89 |
+
args = parser.parse_args()
|
90 |
+
video_test(args)
|