--- # --------------------------- | |
# `sample` can be | |
# - `uniform` (np.random.uniform(*from)) | |
# - `range` (np.choice(np.arange(*from))) | |
# - `list` (np.choice(from)) | |
# - `cartesian` special case where a cartesian product of all keys with the `cartesian` sampling scheme | |
# is created and iterated over in order. `from` MUST be a list | |
# As we iterate over the cartesian product of all | |
# such keys, others are sampled as usual. If n_search is larger than the size of the cartesian | |
# product, it will cycle again through the product in the same order | |
# example with A being `cartesian` from [1, 2] and B from [y, z] and 5 searches: | |
# => {A:1, B: y}, {A:1, B: z}, {A:2, B: y}, {A:2, B: z}, {A:1, B: y} | |
# - `sequential` samples will loop through the values in `from`. `from` MUST be a list | |
# --------------------------- | |
# ----- SBATCH config ----- | |
cpus: 8 | |
partition: long | |
mem: 32G | |
gres: "gpu:rtx8000:1" | |
codeloc: $HOME/ccai/climategan | |
modules: "module load anaconda/3 && module load pytorch" | |
conda: "conda activate climatenv && conda deactivate && conda activate climatenv" | |
n_search: -1 | |
# ------------------------ | |
# ----- Train Args ----- | |
# ------------------------ | |
"args.note": "Hyper Parameter search #1" | |
"args.comet_tags": ["masker_search", "v1"] | |
"args.config": "config/trainer/my_config.yaml" | |
# -------------------------- | |
# ----- Model config ----- | |
# -------------------------- | |
"gen.opt.lr": | |
sample: list | |
from: [0.01, 0.001, 0.0001, 0.00001] | |
"dis.opt.lr": | |
sample: uniform | |
from: [0.01, 0.001] | |
"dis.opt.optimizer": | |
sample: cartesian | |
from: | |
- ExtraAdam | |
- Adam | |
"gen.opt.optimizer": | |
sample: cartesian | |
from: | |
- ExtraAdam | |
- Adam | |
"gen.lambdas.C": | |
sample: cartesian | |
from: | |
- 0.1 | |
- 0.5 | |
- 1 | |
"data.loaders.batch_size": | |
sample: sequential | |
from: | |
- 2 | |
- 4 | |
- 6 | |