|
import torch.nn as nn |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__( |
|
self, inplanes, planes, stride=1, dilation=1, downsample=None, BatchNorm=None |
|
): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
self.bn1 = BatchNorm(planes) |
|
self.conv2 = nn.Conv2d( |
|
planes, |
|
planes, |
|
kernel_size=3, |
|
stride=stride, |
|
dilation=dilation, |
|
padding=dilation, |
|
bias=False, |
|
) |
|
self.bn2 = BatchNorm(planes) |
|
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) |
|
self.bn3 = BatchNorm(planes * 4) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
self.dilation = dilation |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
def __init__( |
|
self, block, layers, output_stride, BatchNorm, verbose=0, no_init=False |
|
): |
|
self.inplanes = 64 |
|
self.verbose = verbose |
|
super(ResNet, self).__init__() |
|
blocks = [1, 2, 4] |
|
if output_stride == 16: |
|
strides = [1, 2, 2, 1] |
|
dilations = [1, 1, 1, 2] |
|
elif output_stride == 8: |
|
strides = [1, 2, 1, 1] |
|
dilations = [1, 1, 2, 4] |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = BatchNorm(64) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
self.layer1 = self._make_layer( |
|
block, |
|
64, |
|
layers[0], |
|
stride=strides[0], |
|
dilation=dilations[0], |
|
BatchNorm=BatchNorm, |
|
) |
|
self.layer2 = self._make_layer( |
|
block, |
|
128, |
|
layers[1], |
|
stride=strides[1], |
|
dilation=dilations[1], |
|
BatchNorm=BatchNorm, |
|
) |
|
self.layer3 = self._make_layer( |
|
block, |
|
256, |
|
layers[2], |
|
stride=strides[2], |
|
dilation=dilations[2], |
|
BatchNorm=BatchNorm, |
|
) |
|
self.layer4 = self._make_MG_unit( |
|
block, |
|
512, |
|
blocks=blocks, |
|
stride=strides[3], |
|
dilation=dilations[3], |
|
BatchNorm=BatchNorm, |
|
) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d( |
|
self.inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
), |
|
BatchNorm(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block(self.inplanes, planes, stride, dilation, downsample, BatchNorm) |
|
) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append( |
|
block(self.inplanes, planes, dilation=dilation, BatchNorm=BatchNorm) |
|
) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_MG_unit( |
|
self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None |
|
): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d( |
|
self.inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
), |
|
BatchNorm(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
stride, |
|
dilation=blocks[0] * dilation, |
|
downsample=downsample, |
|
BatchNorm=BatchNorm, |
|
) |
|
) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, len(blocks)): |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
stride=1, |
|
dilation=blocks[i] * dilation, |
|
BatchNorm=BatchNorm, |
|
) |
|
) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, input): |
|
x = self.conv1(input) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
low_level_feat = x |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
return x, low_level_feat |
|
|
|
|
|
def ResNet101(output_stride=8, BatchNorm=nn.BatchNorm2d, verbose=0, no_init=False): |
|
"""Constructs a ResNet-101 model. |
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
""" |
|
model = ResNet( |
|
Bottleneck, |
|
[3, 4, 23, 3], |
|
output_stride, |
|
BatchNorm, |
|
verbose=verbose, |
|
no_init=no_init, |
|
) |
|
return model |
|
|