|
""" |
|
from https://github.com/LikeLy-Journey/SegmenTron/blob/ |
|
4bc605eedde7d680314f63d329277b73f83b1c5f/segmentron/modules/basic.py#L34 |
|
""" |
|
|
|
from collections import OrderedDict |
|
from pathlib import Path |
|
|
|
import torch |
|
import torch.nn as nn |
|
from climategan.blocks import InterpolateNearest2d |
|
|
|
|
|
class SeparableConv2d(nn.Module): |
|
def __init__( |
|
self, |
|
inplanes, |
|
planes, |
|
kernel_size=3, |
|
stride=1, |
|
dilation=1, |
|
relu_first=True, |
|
bias=False, |
|
norm_layer=nn.BatchNorm2d, |
|
): |
|
super().__init__() |
|
depthwise = nn.Conv2d( |
|
inplanes, |
|
inplanes, |
|
kernel_size, |
|
stride=stride, |
|
padding=dilation, |
|
dilation=dilation, |
|
groups=inplanes, |
|
bias=bias, |
|
) |
|
bn_depth = norm_layer(inplanes) |
|
pointwise = nn.Conv2d(inplanes, planes, 1, bias=bias) |
|
bn_point = norm_layer(planes) |
|
|
|
if relu_first: |
|
self.block = nn.Sequential( |
|
OrderedDict( |
|
[ |
|
("relu", nn.ReLU()), |
|
("depthwise", depthwise), |
|
("bn_depth", bn_depth), |
|
("pointwise", pointwise), |
|
("bn_point", bn_point), |
|
] |
|
) |
|
) |
|
else: |
|
self.block = nn.Sequential( |
|
OrderedDict( |
|
[ |
|
("depthwise", depthwise), |
|
("bn_depth", bn_depth), |
|
("relu1", nn.ReLU(inplace=True)), |
|
("pointwise", pointwise), |
|
("bn_point", bn_point), |
|
("relu2", nn.ReLU(inplace=True)), |
|
] |
|
) |
|
) |
|
|
|
def forward(self, x): |
|
return self.block(x) |
|
|
|
|
|
class _ConvBNReLU(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
relu6=False, |
|
norm_layer=nn.BatchNorm2d, |
|
): |
|
super(_ConvBNReLU, self).__init__() |
|
self.conv = nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
groups, |
|
bias=False, |
|
) |
|
self.bn = norm_layer(out_channels) |
|
self.relu = nn.ReLU6(True) if relu6 else nn.ReLU(True) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
x = self.relu(x) |
|
return x |
|
|
|
|
|
class _DepthwiseConv(nn.Module): |
|
"""conv_dw in MobileNet""" |
|
|
|
def __init__( |
|
self, in_channels, out_channels, stride, norm_layer=nn.BatchNorm2d, **kwargs |
|
): |
|
super(_DepthwiseConv, self).__init__() |
|
self.conv = nn.Sequential( |
|
_ConvBNReLU( |
|
in_channels, |
|
in_channels, |
|
3, |
|
stride, |
|
1, |
|
groups=in_channels, |
|
norm_layer=norm_layer, |
|
), |
|
_ConvBNReLU(in_channels, out_channels, 1, norm_layer=norm_layer), |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class InvertedResidual(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
stride, |
|
expand_ratio, |
|
dilation=1, |
|
norm_layer=nn.BatchNorm2d, |
|
): |
|
super(InvertedResidual, self).__init__() |
|
assert stride in [1, 2] |
|
self.use_res_connect = stride == 1 and in_channels == out_channels |
|
|
|
layers = list() |
|
inter_channels = int(round(in_channels * expand_ratio)) |
|
if expand_ratio != 1: |
|
|
|
layers.append( |
|
_ConvBNReLU( |
|
in_channels, inter_channels, 1, relu6=True, norm_layer=norm_layer |
|
) |
|
) |
|
layers.extend( |
|
[ |
|
|
|
_ConvBNReLU( |
|
inter_channels, |
|
inter_channels, |
|
3, |
|
stride, |
|
dilation, |
|
dilation, |
|
groups=inter_channels, |
|
relu6=True, |
|
norm_layer=norm_layer, |
|
), |
|
|
|
nn.Conv2d(inter_channels, out_channels, 1, bias=False), |
|
norm_layer(out_channels), |
|
] |
|
) |
|
self.conv = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
if self.use_res_connect: |
|
return x + self.conv(x) |
|
else: |
|
return self.conv(x) |
|
|
|
|
|
class MobileNetV2(nn.Module): |
|
def __init__(self, norm_layer=nn.BatchNorm2d, pretrained_path=None, no_init=False): |
|
super(MobileNetV2, self).__init__() |
|
output_stride = 16 |
|
self.multiplier = 1.0 |
|
if output_stride == 32: |
|
dilations = [1, 1] |
|
elif output_stride == 16: |
|
dilations = [1, 2] |
|
elif output_stride == 8: |
|
dilations = [2, 4] |
|
else: |
|
raise NotImplementedError |
|
inverted_residual_setting = [ |
|
|
|
[1, 16, 1, 1], |
|
[6, 24, 2, 2], |
|
[6, 32, 3, 2], |
|
[6, 64, 4, 2], |
|
[6, 96, 3, 1], |
|
[6, 160, 3, 2], |
|
[6, 320, 1, 1], |
|
] |
|
|
|
input_channels = int(32 * self.multiplier) if self.multiplier > 1.0 else 32 |
|
|
|
self.conv1 = _ConvBNReLU( |
|
3, input_channels, 3, 2, 1, relu6=True, norm_layer=norm_layer |
|
) |
|
|
|
|
|
self.planes = input_channels |
|
self.block1 = self._make_layer( |
|
InvertedResidual, |
|
self.planes, |
|
inverted_residual_setting[0:1], |
|
norm_layer=norm_layer, |
|
) |
|
self.block2 = self._make_layer( |
|
InvertedResidual, |
|
self.planes, |
|
inverted_residual_setting[1:2], |
|
norm_layer=norm_layer, |
|
) |
|
self.block3 = self._make_layer( |
|
InvertedResidual, |
|
self.planes, |
|
inverted_residual_setting[2:3], |
|
norm_layer=norm_layer, |
|
) |
|
self.block4 = self._make_layer( |
|
InvertedResidual, |
|
self.planes, |
|
inverted_residual_setting[3:5], |
|
dilations[0], |
|
norm_layer=norm_layer, |
|
) |
|
self.block5 = self._make_layer( |
|
InvertedResidual, |
|
self.planes, |
|
inverted_residual_setting[5:], |
|
dilations[1], |
|
norm_layer=norm_layer, |
|
) |
|
self.last_inp_channels = self.planes |
|
|
|
self.up2 = InterpolateNearest2d() |
|
|
|
|
|
if not no_init: |
|
self.pretrained_path = pretrained_path |
|
if pretrained_path is not None: |
|
self._load_pretrained_model() |
|
else: |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode="fan_out") |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.ones_(m.weight) |
|
nn.init.zeros_(m.bias) |
|
elif isinstance(m, nn.Linear): |
|
nn.init.normal_(m.weight, 0, 0.01) |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
|
|
def _make_layer( |
|
self, |
|
block, |
|
planes, |
|
inverted_residual_setting, |
|
dilation=1, |
|
norm_layer=nn.BatchNorm2d, |
|
): |
|
features = list() |
|
for t, c, n, s in inverted_residual_setting: |
|
out_channels = int(c * self.multiplier) |
|
stride = s if dilation == 1 else 1 |
|
features.append( |
|
block(planes, out_channels, stride, t, dilation, norm_layer) |
|
) |
|
planes = out_channels |
|
for i in range(n - 1): |
|
features.append( |
|
block(planes, out_channels, 1, t, norm_layer=norm_layer) |
|
) |
|
planes = out_channels |
|
self.planes = planes |
|
return nn.Sequential(*features) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.block1(x) |
|
c1 = self.block2(x) |
|
c2 = self.block3(c1) |
|
c3 = self.block4(c2) |
|
c4 = self.up2(self.block5(c3)) |
|
|
|
|
|
|
|
return c4, c1 |
|
|
|
def _load_pretrained_model(self): |
|
assert self.pretrained_path is not None |
|
assert Path(self.pretrained_path).exists() |
|
|
|
pretrain_dict = torch.load(self.pretrained_path) |
|
pretrain_dict = {k.replace("encoder.", ""): v for k, v in pretrain_dict.items()} |
|
model_dict = {} |
|
state_dict = self.state_dict() |
|
ignored = [] |
|
for k, v in pretrain_dict.items(): |
|
if k in state_dict: |
|
model_dict[k] = v |
|
else: |
|
ignored.append(k) |
|
state_dict.update(model_dict) |
|
self.load_state_dict(state_dict) |
|
self.loaded_pre_trained = True |
|
print( |
|
" - Loaded pre-trained MobileNetV2: ignored {}/{} keys".format( |
|
len(ignored), len(pretrain_dict) |
|
) |
|
) |
|
|