vicfeuga commited on
Commit
db01c92
β€’
1 Parent(s): 4faef16

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +129 -5
README.md CHANGED
@@ -25,13 +25,137 @@ model-index:
25
  This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
- ## Usage (with Stable-baselines3)
29
- TODO: Add your code
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
 
32
  ```python
33
- from stable_baselines3 import ...
34
- from huggingface_sb3 import load_from_hub
35
 
36
- ...
 
 
 
 
 
 
 
37
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Install dependencies and create a virtual screen πŸ”½
 
29
 
30
+ ```python
31
+ # Virtual display
32
+ from pyvirtualdisplay import Display
33
+
34
+ virtual_display = Display(visible=0, size=(1400, 900))
35
+ virtual_display.start()
36
+ ```
37
+ ## Import the packages πŸ“¦
38
+ ```python
39
+ import gym
40
+
41
+ from huggingface_sb3 import load_from_hub, package_to_hub, push_to_hub
42
+ from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.
43
+
44
+ from stable_baselines3 import PPO
45
+ from stable_baselines3.common.evaluation import evaluate_policy
46
+ from stable_baselines3.common.env_util import make_vec_env
47
+ ```
48
+ ## Understand what is Gym and how it works πŸ€–
49
+ ```python
50
+ import gym
51
+
52
+ # First, we create our environment called LunarLander-v2
53
+ env = gym.make("LunarLander-v2")
54
+
55
+ # Then we reset this environment
56
+ observation = env.reset()
57
+
58
+ for _ in range(20):
59
+ # Take a random action
60
+ action = env.action_space.sample()
61
+ print("Action taken:", action)
62
+
63
+ # Do this action in the environment and get
64
+ # next_state, reward, done and info
65
+ observation, reward, done, info = env.step(action)
66
+
67
+ # If the game is done (in our case we land, crashed or timeout)
68
+ if done:
69
+ # Reset the environment
70
+ print("Environment is reset")
71
+ observation = env.reset()
72
+ ```
73
+ ## Create the LunarLander environment πŸŒ› and understand how it works
74
+ ```python
75
+ # We create our environment with gym.make("<name_of_the_environment>")
76
+ env = gym.make("LunarLander-v2")
77
+ env.reset()
78
+ print("_____OBSERVATION SPACE_____ \n")
79
+ print("Observation Space Shape", env.observation_space.shape)
80
+ print("Sample observation", env.observation_space.sample()) # Get a random observation
81
+ print("\n _____ACTION SPACE_____ \n")
82
+ print("Action Space Shape", env.action_space.n)
83
+ print("Action Space Sample", env.action_space.sample()) # Take a random action
84
+
85
+ # Create the environment
86
+ env = make_vec_env('LunarLander-v2', n_envs=16)
87
+ ```
88
+ ## Create the Model πŸ€–
89
+ ```python
90
+ # We added some parameters to accelerate the training
91
+ model = PPO(
92
+ policy = 'MlpPolicy',
93
+ env = env,
94
+ n_steps = 1024,
95
+ batch_size = 64,
96
+ n_epochs = 4,
97
+ gamma = 0.999,
98
+ gae_lambda = 0.98,
99
+ ent_coef = 0.01,
100
+ verbose=1)
101
+ model_name = "ppo-LunarLander-v2"
102
+ ```
103
+
104
+ ## Train the PPO agent πŸƒ
105
+ ```python
106
+ # Train it for 1,000,000 timesteps
107
+ model.learn(total_timesteps=3000000)
108
+ # Save the model
109
+ model.save(model_name)
110
+ ```
111
 
112
+ ## Evaluate the agent πŸ“ˆ
113
  ```python
114
+ #load the model
115
+ model = model.load("/content/ppo-LunarLander-v2.zip")
116
 
117
+ eval_env = gym.make("LunarLander-v2")
118
+ mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
119
+ print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
120
+ ```
121
+ ## Publish our trained model on the Hub πŸ”₯
122
+ ```python
123
+ notebook_login()
124
+ !git config --global credential.helper store
125
  ```
126
+ ```python
127
+ import gym
128
+
129
+ from stable_baselines3 import PPO
130
+ from stable_baselines3.common.vec_env import DummyVecEnv
131
+ from stable_baselines3.common.env_util import make_vec_env
132
+
133
+ from huggingface_sb3 import package_to_hub
134
+
135
+ # PLACE the variables you've just defined two cells above
136
+ # Define the name of the environment
137
+ env_id = "LunarLander-v2"
138
+
139
+ # TODO: Define the model architecture we used
140
+ model_architecture = "PPO"
141
+
142
+ ## Define a repo_id
143
+ ## repo_id is the id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2
144
+ ## CHANGE WITH YOUR REPO ID
145
+ repo_id = "vicfeuga/ppo-LunarLander-v2" # Change with your repo id, you can't push with mine πŸ˜„
146
+
147
+ ## Define the commit message
148
+ commit_message = "Upload PPO LunarLander-v2 trained agent"
149
+
150
+ # Create the evaluation env
151
+ eval_env = DummyVecEnv([lambda: gym.make(env_id)])
152
+
153
+ # PLACE the package_to_hub function you've just filled here
154
+ package_to_hub(model=model, # Our trained model
155
+ model_name=model_name, # The name of our trained model
156
+ model_architecture=model_architecture, # The model architecture we used: in our case PPO
157
+ env_id=env_id, # Name of the environment
158
+ eval_env=eval_env, # Evaluation Environment
159
+ repo_id=repo_id, # id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2
160
+ commit_message=commit_message)
161
+ ```