climate-greta-effect / twitter-scraper.py
vibha-mah's picture
Upload twitter-scraper.py
0cb02b6
import asyncio
import csv
import random
import datetime
from twscrape import API, gather
from twscrape.logger import set_log_level
async def main():
api = API()
year = '2018'
months = range (1, 13)
for month in months:
days = random.sample(range(1,29), 10) # select 10 random days
for day in days:
start_date = datetime.date(int(year), month, day)
end_date = start_date + datetime.timedelta(days=1) # next day
q = f"climate change since:{start_date} until:{end_date}"
# print(f"Querying: {q}")
with open('2018-climate-all.csv', mode='a', newline='', encoding='utf-8') as file:
writer = csv.writer(file)
if file.tell() == 0:
writer.writerow(['Tweet ID', 'Username', 'Content', 'Created At', 'User Location'])
tweet_count = 0
async for tweet in api.search(q, limit=800): # sets limit to 800 tweets per day
user_profile = await api.user_by_id(tweet.user.id)
user_location = user_profile.location
if user_location is not None and user_location != "":
print(tweet.id, tweet.user.username, tweet.rawContent, tweet.date, user_location)
writer.writerow([tweet.id, tweet.user.username, tweet.rawContent, tweet.date, user_location])
tweet_count+=1
if tweet_count >= 800:
break
print(f"Number of tweets collected for {start_date}: {tweet_count}")
if __name__ == "__main__":
asyncio.run(main())