Text2Text Generation
Transformers
PyTorch
Spanish
led
text-generation-inference
Inference Endpoints
vgaraujov commited on
Commit
357591d
·
verified ·
1 Parent(s): d3c0adc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -0
README.md CHANGED
@@ -1,3 +1,61 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - es
5
+ datasets:
6
+ - large_spanish_corpus
7
+ - bertin-project/mc4-es-sampled
8
+ - oscar-corpus/OSCAR-2109
9
+ base_model: vgaraujov/bart-base-spanish
10
+ tags:
11
+ - text-generation-inference
12
+ widget:
13
+ - text: Quito es la capital de <mask>
14
  ---
15
+
16
+ # Longformer Encoder-Decoder Spanish (LEDS) (base-sized model)
17
+
18
+ LED model based on [BARTO](https://huggingface.co/vgaraujov/bart-base-spanish). It was introduced in the paper [Sequence-to-Sequence Spanish Pre-trained Language Models](https://arxiv.org/abs/2309.11259).
19
+
20
+ ## Model description
21
+
22
+ LEDS is a BART-based model (transformer encoder-decoder) with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function and (2) learning a model to reconstruct the original text.
23
+
24
+ To process 16K tokens, the BARTO's position embedding matrix was simply copied 16 times.
25
+
26
+ BARTO is particularly effective when fine-tuned for long-range summarization and question answering.
27
+
28
+ ## Intended uses & limitations
29
+
30
+ You can use the raw model for text infilling. However, the model is mainly meant to be fine-tuned on a supervised dataset.
31
+
32
+ This model does not have a slow tokenizer (LEDTokenizer).
33
+
34
+ ### How to use
35
+
36
+ Here is how to use this model in PyTorch:
37
+
38
+ ```python
39
+ from transformers import AutoTokenizer, AutoModel
40
+
41
+ tokenizer = AutoTokenizer.from_pretrained('vgaraujov/led-base-16384-spanish')
42
+ model = AutoModel.from_pretrained('vgaraujov/led-base-16384-spanish')
43
+
44
+ inputs = tokenizer("Hola amigo, bienvenido a casa.", return_tensors="pt")
45
+ outputs = model(**inputs)
46
+
47
+ last_hidden_states = outputs.last_hidden_state
48
+ ```
49
+
50
+ ### Citation (BibTeX)
51
+
52
+ ```bibtex
53
+ @misc{araujo2023sequencetosequence,
54
+ title={Sequence-to-Sequence Spanish Pre-trained Language Models},
55
+ author={Vladimir Araujo and Maria Mihaela Trusca and Rodrigo Tufiño and Marie-Francine Moens},
56
+ year={2023},
57
+ eprint={2309.11259},
58
+ archivePrefix={arXiv},
59
+ primaryClass={cs.CL}
60
+ }
61
+ ```