Text2Text Generation
Transformers
PyTorch
Safetensors
Spanish
bart
text-generation-inference
Inference Endpoints
vgaraujov commited on
Commit
ea69267
1 Parent(s): 16b15b4

Update README info

Browse files
Files changed (1) hide show
  1. README.md +49 -0
README.md CHANGED
@@ -1,3 +1,52 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - es
5
+ datasets:
6
+ - large_spanish_corpus
7
+ - bertin-project/mc4-es-sampled
8
+ - oscar-corpus/OSCAR-2109
9
  ---
10
+
11
+ # BARTO (base-sized model)
12
+
13
+ BARTO model pre-trained on Spanish language. It was introduced in the paper [Sequence-to-Sequence Spanish Pre-trained Language Models](https://arxiv.org/abs/2309.11259).
14
+
15
+ ## Model description
16
+
17
+ BARTO is a BART-based model (transformer encoder-decoder) with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function and (2) learning a model to reconstruct the original text.
18
+
19
+ BARTO is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering).
20
+
21
+ ## Intended uses
22
+
23
+ You can use the raw model for text infilling. However, the model is mainly meant to be fine-tuned on a supervised dataset.
24
+
25
+ ### How to use
26
+
27
+ Here is how to use this model in PyTorch:
28
+
29
+ ```python
30
+ from transformers import AutoTokenizer, AutoModel
31
+
32
+ tokenizer = AutoTokenizer.from_pretrained('vgaraujov/bart-base-spanish')
33
+ model = AutoModel.from_pretrained('vgaraujov/bart-base-spanish')
34
+
35
+ inputs = tokenizer("Hola amigo, bienvenido a casa.", return_tensors="pt")
36
+ outputs = model(**inputs)
37
+
38
+ last_hidden_states = outputs.last_hidden_state
39
+ ```
40
+
41
+ ### Citation (BibTeX)
42
+
43
+ ```bibtex
44
+ @misc{araujo2023sequencetosequence,
45
+ title={Sequence-to-Sequence Spanish Pre-trained Language Models},
46
+ author={Vladimir Araujo and Maria Mihaela Trusca and Rodrigo Tufiño and Marie-Francine Moens},
47
+ year={2023},
48
+ eprint={2309.11259},
49
+ archivePrefix={arXiv},
50
+ primaryClass={cs.CL}
51
+ }
52
+ ```