initial commit
Browse files- .vscode/settings.json +0 -6
- handler.py +0 -128
.vscode/settings.json
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"[python]": {
|
3 |
-
"editor.defaultFormatter": "ms-python.black-formatter"
|
4 |
-
},
|
5 |
-
"python.formatting.provider": "none"
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
handler.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from PIL import Image
|
3 |
-
from diffusers import (
|
4 |
-
StableDiffusionControlNetImg2ImgPipeline,
|
5 |
-
ControlNetModel,
|
6 |
-
DDIMScheduler,
|
7 |
-
)
|
8 |
-
from diffusers.utils import load_image
|
9 |
-
import openai
|
10 |
-
from io import BytesIO
|
11 |
-
import base64
|
12 |
-
import qrcode
|
13 |
-
import random
|
14 |
-
|
15 |
-
qrcode_data = "https://www.vertxdesigns.com/"
|
16 |
-
prompt = "masterpiece, best quality, mecha, no humans, black armor, blue eyes, science fiction, fire, laser canon beam, war, conflict, destroyed city background"
|
17 |
-
negative_prompt = "UnrealisticDream, FastNegativeEmbedding"
|
18 |
-
|
19 |
-
|
20 |
-
qr = qrcode.QRCode(
|
21 |
-
version=1,
|
22 |
-
error_correction=qrcode.constants.ERROR_CORRECT_H,
|
23 |
-
box_size=10,
|
24 |
-
border=4,
|
25 |
-
)
|
26 |
-
qr.add_data(qrcode_data)
|
27 |
-
qr.make(fit=True)
|
28 |
-
img = qr.make_image(fill_color="black", back_color="white")
|
29 |
-
|
30 |
-
# Resize image
|
31 |
-
basewidth = 768
|
32 |
-
wpercent = basewidth / float(img.size[0])
|
33 |
-
hsize = int((float(img.size[1]) * float(wpercent)))
|
34 |
-
qrcode_image = img.resize((basewidth, hsize), Image.LANCZOS)
|
35 |
-
|
36 |
-
# Display the image
|
37 |
-
qrcode_image
|
38 |
-
# img.save('qrcode.png')
|
39 |
-
|
40 |
-
|
41 |
-
# Initialize the control net model and pipeline.
|
42 |
-
controlnet = ControlNetModel.from_pretrained(
|
43 |
-
"DionTimmer/controlnet_qrcode-control_v11p_sd21", torch_dtype=torch.float16
|
44 |
-
)
|
45 |
-
|
46 |
-
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
47 |
-
"stabilityai/stable-diffusion-2-1",
|
48 |
-
controlnet=controlnet,
|
49 |
-
safety_checker=None,
|
50 |
-
torch_dtype=torch.float16,
|
51 |
-
)
|
52 |
-
|
53 |
-
# Enable memory efficient attention.
|
54 |
-
pipe.enable_xformers_memory_efficient_attention()
|
55 |
-
|
56 |
-
# Set the scheduler for the pipeline.
|
57 |
-
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
58 |
-
|
59 |
-
# Enable CPU offload for the model.
|
60 |
-
pipe.enable_model_cpu_offload()
|
61 |
-
|
62 |
-
|
63 |
-
# Resizes input_image to a specified resolution while maintaining the aspect ratio.
|
64 |
-
def resize_for_condition_image(input_image: Image, resolution: int):
|
65 |
-
input_image = input_image.convert("RGB")
|
66 |
-
W, H = input_image.size
|
67 |
-
k = float(resolution) / min(H, W)
|
68 |
-
H *= k
|
69 |
-
W *= k
|
70 |
-
H = int(round(H / 64.0)) * 64
|
71 |
-
W = int(round(W / 64.0)) * 64
|
72 |
-
img = input_image.resize((W, H), resample=Image.LANCZOS)
|
73 |
-
return img
|
74 |
-
|
75 |
-
|
76 |
-
def get_random_seed():
|
77 |
-
return random.randint(1, 1e8) # random integer between 1 and 1,000,000.
|
78 |
-
|
79 |
-
|
80 |
-
# Generate and store your seed.
|
81 |
-
seed = get_random_seed()
|
82 |
-
|
83 |
-
# Set the seed for the random number generator.
|
84 |
-
generator = torch.manual_seed(seed)
|
85 |
-
|
86 |
-
# Print the seed.
|
87 |
-
print(seed)
|
88 |
-
|
89 |
-
|
90 |
-
openai.api_key = "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"
|
91 |
-
response = openai.Image.create(prompt=prompt, n=1, size="1024x1024")
|
92 |
-
image_url = response.data[0].url
|
93 |
-
print(image_url)
|
94 |
-
|
95 |
-
|
96 |
-
init_image = load_image(image_url)
|
97 |
-
|
98 |
-
# Set the control image to the qrcode image.
|
99 |
-
control_image = qrcode_image
|
100 |
-
|
101 |
-
# Resize the initial image
|
102 |
-
init_image = resize_for_condition_image(init_image, 768)
|
103 |
-
|
104 |
-
# Run the image generation process using the pipeline.
|
105 |
-
image = pipe(
|
106 |
-
prompt=prompt,
|
107 |
-
negative_prompt=negative_prompt,
|
108 |
-
image=init_image, # The initial image, set as a QR code image
|
109 |
-
control_image=control_image, # QR code image
|
110 |
-
width=768,
|
111 |
-
height=768,
|
112 |
-
guidance_scale=7.5, # The influence of the 'prompt' 0-50
|
113 |
-
controlnet_conditioning_scale=1.6, # The influence of the qr code 1-5
|
114 |
-
generator=generator, # Random seed for the generation process
|
115 |
-
strength=0.99, # Noise added to the QR code 0-1
|
116 |
-
num_inference_steps=150, # The number of steps in the image generation process
|
117 |
-
)
|
118 |
-
|
119 |
-
|
120 |
-
image.images[0]
|
121 |
-
|
122 |
-
|
123 |
-
pil_image = image.images[0]
|
124 |
-
buffered = BytesIO()
|
125 |
-
pil_image.save(buffered, format="PNG")
|
126 |
-
image_base64 = base64.b64encode(buffered.getvalue()).decode()
|
127 |
-
print(f"First 10 characters: {image_base64[:10]}")
|
128 |
-
print(f"Length of string: {len(image_base64):,}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|