nirraviv89
commited on
Commit
โข
fbc3442
1
Parent(s):
6f8733e
rename and documentation
Browse files- src/config.py +9 -11
- src/inference.py +26 -40
- src/models.py +3 -3
src/config.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
from transformers import BertConfig
|
2 |
|
3 |
|
4 |
-
class
|
5 |
r"""
|
6 |
-
This is the configuration class to store the configuration of a [`
|
7 |
to the specified arguments, defining the model architecture.
|
8 |
Args:
|
9 |
backward_context (`int`, *optional*, defaults to 15):
|
@@ -20,7 +20,7 @@ class CustomBertConfig(BertConfig):
|
|
20 |
>>> from transformers import BertConfig, BertModel
|
21 |
|
22 |
>>> # Initializing a BERT google-bert/bert-base-uncased style configuration
|
23 |
-
>>> configuration =
|
24 |
|
25 |
>>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
|
26 |
>>> model = BertForPunctuation(configuration)
|
@@ -29,15 +29,13 @@ class CustomBertConfig(BertConfig):
|
|
29 |
>>> configuration = model.config
|
30 |
```"""
|
31 |
|
32 |
-
model_type = "custom_bert"
|
33 |
-
|
34 |
def __init__(
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
):
|
42 |
super().__init__(**kwargs)
|
43 |
self.backward_context = backward_context
|
|
|
1 |
from transformers import BertConfig
|
2 |
|
3 |
|
4 |
+
class PunctuationBertConfig(BertConfig):
|
5 |
r"""
|
6 |
+
This is the configuration class to store the configuration of a [`PunctuationBertConfig`]. It is based on BERT config
|
7 |
to the specified arguments, defining the model architecture.
|
8 |
Args:
|
9 |
backward_context (`int`, *optional*, defaults to 15):
|
|
|
20 |
>>> from transformers import BertConfig, BertModel
|
21 |
|
22 |
>>> # Initializing a BERT google-bert/bert-base-uncased style configuration
|
23 |
+
>>> configuration = PunctuationBertConfig()
|
24 |
|
25 |
>>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
|
26 |
>>> model = BertForPunctuation(configuration)
|
|
|
29 |
>>> configuration = model.config
|
30 |
```"""
|
31 |
|
|
|
|
|
32 |
def __init__(
|
33 |
+
self,
|
34 |
+
backward_context=15,
|
35 |
+
forward_context=16,
|
36 |
+
output_size=4,
|
37 |
+
dropout=0.3,
|
38 |
+
**kwargs,
|
39 |
):
|
40 |
super().__init__(**kwargs)
|
41 |
self.backward_context = backward_context
|
src/inference.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from typing import
|
2 |
|
3 |
import numpy as np
|
4 |
import torch
|
@@ -8,10 +8,12 @@ from transformers import BertTokenizer
|
|
8 |
from src.models import BertForPunctuation
|
9 |
|
10 |
PUNCTUATION_SIGNS = ['', ',', '.', '?']
|
|
|
|
|
11 |
|
12 |
|
13 |
def tokenize_text(
|
14 |
-
|
15 |
) -> Tuple[List[int], List[int], List[float]]:
|
16 |
"""
|
17 |
Tokenizes text and generates pause list for each word
|
@@ -47,11 +49,10 @@ def tokenize_text(
|
|
47 |
|
48 |
|
49 |
def gen_model_inputs(
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
pause_tokens: Optional[Dict[Tuple, int]] = None,
|
55 |
) -> torch.Tensor:
|
56 |
"""
|
57 |
Generates inputs for model out of list of indexed words.
|
@@ -60,23 +61,17 @@ def gen_model_inputs(
|
|
60 |
x: list of indexed words
|
61 |
pause: list of corresponding pauses
|
62 |
forward_context: size of the forward context window
|
63 |
-
backward_context: size of the backward context window (without the
|
64 |
-
pause_tokens: dictionary of pause ranges and corresponding tokens from bert tokenizer
|
65 |
|
66 |
Returns:
|
67 |
A tensor of model inputs for each indexed word in x
|
68 |
"""
|
69 |
-
if pause_tokens is None:
|
70 |
-
pause_tokens = {(-1000, 1000): 0}
|
71 |
model_input = []
|
72 |
-
tokenized_pause = []
|
73 |
x_pad = [0] * backward_context + x + [0] * forward_context
|
74 |
|
75 |
-
for i, p in enumerate(pause):
|
76 |
-
tokenized_pause.append(next(value for key, value in pause_tokens.items() if key[0] < p <= key[1]))
|
77 |
-
|
78 |
for i in range(len(x)):
|
79 |
-
segment = x_pad[i:i + backward_context + forward_context + 1]
|
80 |
segment.insert(backward_context + 1, tokenized_pause[i])
|
81 |
model_input.append(segment)
|
82 |
return torch.tensor(model_input)
|
@@ -109,16 +104,15 @@ def add_punctuation_to_text(text: str, punct_prob: np.ndarray) -> str:
|
|
109 |
|
110 |
|
111 |
def get_prediction(
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
):
|
122 |
"""
|
123 |
Generates predictions for given list of words.
|
124 |
Args:
|
@@ -130,18 +124,15 @@ def get_prediction(
|
|
130 |
forward_context: size of the forward context window
|
131 |
pause_list: list of pauses after each word in seconds
|
132 |
device: device to run model on
|
133 |
-
return_prob: if True returns probabilities, if False returns text with punctuation
|
134 |
|
135 |
Returns:
|
136 |
-
|
137 |
"""
|
138 |
word_list = text.split()
|
139 |
if not pause_list:
|
140 |
# make default pauses if pauses are not provided
|
141 |
pause_list = [0.0] * len(word_list)
|
142 |
|
143 |
-
# prepare text
|
144 |
-
# we need original word idx since after tokenize number of tokens might not be equal to number of words
|
145 |
word_idx, x, pause = tokenize_text(word_list=word_list, pause_list=pause_list, tokenizer=tokenizer)
|
146 |
|
147 |
model_inputs = gen_model_inputs(x, pause, forward_context, backward_context)
|
@@ -151,35 +142,30 @@ def get_prediction(
|
|
151 |
output = []
|
152 |
with torch.no_grad():
|
153 |
for ndx in range(0, inputs_length, batch_size):
|
154 |
-
o = model(model_inputs[ndx: min(ndx + batch_size, inputs_length)])
|
155 |
o = F.softmax(o, dim=1)
|
156 |
output.append(o.cpu().data.numpy())
|
157 |
|
158 |
punct_probabilities_matrix = np.concatenate(output, axis=0)
|
159 |
|
160 |
-
if return_prob:
|
161 |
-
return punct_probabilities_matrix
|
162 |
-
|
163 |
punct_text = add_punctuation_to_text(text, punct_probabilities_matrix)
|
164 |
|
165 |
return punct_text
|
166 |
|
167 |
|
168 |
def main():
|
169 |
-
model = BertForPunctuation.from_pretrained(
|
170 |
-
tokenizer = BertTokenizer.from_pretrained(
|
171 |
model.eval()
|
172 |
|
173 |
-
text =
|
174 |
-
|
175 |
-
"ืืืืืืืจืืกืื")
|
176 |
punct_text = get_prediction(
|
177 |
model=model,
|
178 |
text=text,
|
179 |
tokenizer=tokenizer,
|
180 |
backward_context=model.config.backward_context,
|
181 |
forward_context=model.config.forward_context,
|
182 |
-
return_prob=False
|
183 |
)
|
184 |
print(punct_text)
|
185 |
|
|
|
1 |
+
from typing import List, Optional, Tuple
|
2 |
|
3 |
import numpy as np
|
4 |
import torch
|
|
|
8 |
from src.models import BertForPunctuation
|
9 |
|
10 |
PUNCTUATION_SIGNS = ['', ',', '.', '?']
|
11 |
+
PAUSE_TOKEN = 0
|
12 |
+
MODEL_NAME = "verbit/hebrew_punctuation"
|
13 |
|
14 |
|
15 |
def tokenize_text(
|
16 |
+
word_list: List[str], pause_list: List[float], tokenizer: BertTokenizer
|
17 |
) -> Tuple[List[int], List[int], List[float]]:
|
18 |
"""
|
19 |
Tokenizes text and generates pause list for each word
|
|
|
49 |
|
50 |
|
51 |
def gen_model_inputs(
|
52 |
+
x: List[int],
|
53 |
+
pause: List[float],
|
54 |
+
forward_context: int,
|
55 |
+
backward_context: int,
|
|
|
56 |
) -> torch.Tensor:
|
57 |
"""
|
58 |
Generates inputs for model out of list of indexed words.
|
|
|
61 |
x: list of indexed words
|
62 |
pause: list of corresponding pauses
|
63 |
forward_context: size of the forward context window
|
64 |
+
backward_context: size of the backward context window (without the predicted token)`
|
|
|
65 |
|
66 |
Returns:
|
67 |
A tensor of model inputs for each indexed word in x
|
68 |
"""
|
|
|
|
|
69 |
model_input = []
|
70 |
+
tokenized_pause = [PAUSE_TOKEN] * len(pause)
|
71 |
x_pad = [0] * backward_context + x + [0] * forward_context
|
72 |
|
|
|
|
|
|
|
73 |
for i in range(len(x)):
|
74 |
+
segment = x_pad[i : i + backward_context + forward_context + 1]
|
75 |
segment.insert(backward_context + 1, tokenized_pause[i])
|
76 |
model_input.append(segment)
|
77 |
return torch.tensor(model_input)
|
|
|
104 |
|
105 |
|
106 |
def get_prediction(
|
107 |
+
model: BertForPunctuation,
|
108 |
+
text: str,
|
109 |
+
tokenizer: BertTokenizer,
|
110 |
+
batch_size: int = 16,
|
111 |
+
backward_context: int = 15,
|
112 |
+
forward_context: int = 16,
|
113 |
+
pause_list: Optional[List[float]] = None,
|
114 |
+
device: str = 'cpu',
|
115 |
+
) -> str:
|
|
|
116 |
"""
|
117 |
Generates predictions for given list of words.
|
118 |
Args:
|
|
|
124 |
forward_context: size of the forward context window
|
125 |
pause_list: list of pauses after each word in seconds
|
126 |
device: device to run model on
|
|
|
127 |
|
128 |
Returns:
|
129 |
+
text with punctuation
|
130 |
"""
|
131 |
word_list = text.split()
|
132 |
if not pause_list:
|
133 |
# make default pauses if pauses are not provided
|
134 |
pause_list = [0.0] * len(word_list)
|
135 |
|
|
|
|
|
136 |
word_idx, x, pause = tokenize_text(word_list=word_list, pause_list=pause_list, tokenizer=tokenizer)
|
137 |
|
138 |
model_inputs = gen_model_inputs(x, pause, forward_context, backward_context)
|
|
|
142 |
output = []
|
143 |
with torch.no_grad():
|
144 |
for ndx in range(0, inputs_length, batch_size):
|
145 |
+
o = model(model_inputs[ndx : min(ndx + batch_size, inputs_length)])
|
146 |
o = F.softmax(o, dim=1)
|
147 |
output.append(o.cpu().data.numpy())
|
148 |
|
149 |
punct_probabilities_matrix = np.concatenate(output, axis=0)
|
150 |
|
|
|
|
|
|
|
151 |
punct_text = add_punctuation_to_text(text, punct_probabilities_matrix)
|
152 |
|
153 |
return punct_text
|
154 |
|
155 |
|
156 |
def main():
|
157 |
+
model = BertForPunctuation.from_pretrained(MODEL_NAME)
|
158 |
+
tokenizer = BertTokenizer.from_pretrained(MODEL_NAME)
|
159 |
model.eval()
|
160 |
|
161 |
+
text = """ืืืจืช ืืจืืื ืคืืชืื ืืขืจืืช ืืชืืืื ืืืืืกืกืช ืขื ืืื ื ืืืืืืชืืช ืืืืจื ืื ืืฉื ืืฉืืงืืช ืขื ืชืืืื ืขืืืืืช ื ืืฆืืื ืฉืืื
|
162 |
+
ืืช ืืชืืฆืืืช ืืคืฉืจ ืืจืืืช ืืืจ ืืจืฉืช ืืื ืืืงืื ืืขืืืชื ืฉื ืืืืื ืืืืืกืงื ืฉืืื ืืคืงื ืืืื ืืคืจืืืื ืื ืืืืืืื ืืืืืืืจืืกืื"""
|
|
|
163 |
punct_text = get_prediction(
|
164 |
model=model,
|
165 |
text=text,
|
166 |
tokenizer=tokenizer,
|
167 |
backward_context=model.config.backward_context,
|
168 |
forward_context=model.config.forward_context,
|
|
|
169 |
)
|
170 |
print(punct_text)
|
171 |
|
src/models.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
from torch import nn
|
2 |
from transformers import BertForMaskedLM, PreTrainedModel
|
3 |
|
4 |
-
from src.config import
|
5 |
|
6 |
|
7 |
class BertForPunctuation(PreTrainedModel):
|
8 |
-
config_class =
|
9 |
|
10 |
def __init__(self, config):
|
11 |
super().__init__(config)
|
12 |
-
# backward_context + forward_context +
|
13 |
segment_size = config.backward_context + config.forward_context + 2
|
14 |
bert_vocab_size = config.vocab_size
|
15 |
self.bert = BertForMaskedLM(config)
|
|
|
1 |
from torch import nn
|
2 |
from transformers import BertForMaskedLM, PreTrainedModel
|
3 |
|
4 |
+
from src.config import PunctuationBertConfig
|
5 |
|
6 |
|
7 |
class BertForPunctuation(PreTrainedModel):
|
8 |
+
config_class = PunctuationBertConfig
|
9 |
|
10 |
def __init__(self, config):
|
11 |
super().__init__(config)
|
12 |
+
# segment_size equal backward_context + forward_context + predicted token + pause token
|
13 |
segment_size = config.backward_context + config.forward_context + 2
|
14 |
bert_vocab_size = config.vocab_size
|
15 |
self.bert = BertForMaskedLM(config)
|