Update README.md
Browse files
README.md
CHANGED
@@ -6,6 +6,10 @@ base_model:
|
|
6 |
- google/mobilebert-uncased
|
7 |
pipeline_tag: text-classification
|
8 |
library_name: transformers
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
## MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices
|
@@ -17,7 +21,7 @@ This checkpoint is the original MobileBert Optimized Uncased English:
|
|
17 |
[uncased_L-24_H-128_B-512_A-4_F-4_OPT](https://storage.googleapis.com/cloud-tpu-checkpoints/mobilebert/uncased_L-24_H-128_B-512_A-4_F-4_OPT.tar.gz)
|
18 |
checkpoint.
|
19 |
|
20 |
-
This model was fine-tuned on html tags and labels using [Fathom](https://mozilla.github.io/fathom/commands/label.html)
|
21 |
|
22 |
## How to use MobileBERT in `transformers`
|
23 |
|
@@ -34,4 +38,47 @@ print(
|
|
34 |
classifier('<input class="cc-number" placeholder="Enter credit card number..." />')
|
35 |
)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
```
|
|
|
6 |
- google/mobilebert-uncased
|
7 |
pipeline_tag: text-classification
|
8 |
library_name: transformers
|
9 |
+
metrics:
|
10 |
+
- f1
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
---
|
14 |
|
15 |
## MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices
|
|
|
21 |
[uncased_L-24_H-128_B-512_A-4_F-4_OPT](https://storage.googleapis.com/cloud-tpu-checkpoints/mobilebert/uncased_L-24_H-128_B-512_A-4_F-4_OPT.tar.gz)
|
22 |
checkpoint.
|
23 |
|
24 |
+
This model was fine-tuned on html tags and labels using [Fathom](https://mozilla.github.io/fathom/commands/label.html).
|
25 |
|
26 |
## How to use MobileBERT in `transformers`
|
27 |
|
|
|
38 |
classifier('<input class="cc-number" placeholder="Enter credit card number..." />')
|
39 |
)
|
40 |
|
41 |
+
```
|
42 |
+
|
43 |
+
## Model Training Info
|
44 |
+
```python
|
45 |
+
HyperParameters: {
|
46 |
+
'learning_rate': 0.000082,
|
47 |
+
'num_train_epochs': 12,
|
48 |
+
'weight_decay': 0.1,
|
49 |
+
'per_device_train_batch_size': 32,
|
50 |
+
}
|
51 |
+
```
|
52 |
+
|
53 |
+
# Model Performance
|
54 |
+
```
|
55 |
+
Test Performance:
|
56 |
+
'Precision': 0.97043
|
57 |
+
'Recall': 0.96966
|
58 |
+
'F1': 0.96921
|
59 |
+
|
60 |
+
|
61 |
+
precision recall f1-score support
|
62 |
+
|
63 |
+
CC Expiration 1.000 0.875 0.933 16
|
64 |
+
CC Expiration Month 1.000 0.972 0.986 36
|
65 |
+
CC Expiration Year 0.973 0.973 0.973 37
|
66 |
+
CC Name 1.000 0.968 0.984 31
|
67 |
+
CC Number 0.942 0.980 0.961 50
|
68 |
+
CC Payment Type 0.934 0.760 0.838 75
|
69 |
+
CC Security Code 0.929 0.951 0.940 41
|
70 |
+
CC Type 0.857 0.857 0.857 14
|
71 |
+
Confirm Password 1.000 0.860 0.925 57
|
72 |
+
Email 0.972 0.945 0.958 73
|
73 |
+
First Name 0.833 1.000 0.909 5
|
74 |
+
Form 0.950 0.974 0.962 39
|
75 |
+
Last Name 0.833 1.000 0.909 5
|
76 |
+
New Password 0.915 1.000 0.956 97
|
77 |
+
Other 0.981 0.989 0.985 1235
|
78 |
+
Phone 0.600 1.000 0.750 3
|
79 |
+
Zip Code 0.939 0.969 0.954 32
|
80 |
+
|
81 |
+
accuracy 0.970 1846
|
82 |
+
macro avg 0.921 0.945 0.928 1846
|
83 |
+
weighted avg 0.970 0.970 0.969 1846
|
84 |
```
|