Update README.md
Browse files
README.md
CHANGED
@@ -11,6 +11,8 @@ metrics:
|
|
11 |
model-index:
|
12 |
- name: fine-tuned-distilbert-autofill
|
13 |
results: []
|
|
|
|
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -82,308 +84,18 @@ The following hyperparameters were used during training:
|
|
82 |
|
83 |
### Training results
|
84 |
|
85 |
-
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|
86 |
-
|
87 |
-
| 0.902 | 1.0 | 598 | 0.2462 | 0.9202 | 0.9304 | 0.9208 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
[ 0 0 0 0 0 55 0 0 0 0 0 0 0 0
|
98 |
-
0]
|
99 |
-
[ 0 0 0 0 0 0 38 0 0 0 0 0 0 0
|
100 |
-
3]
|
101 |
-
[ 0 0 0 0 0 0 15 23 0 0 0 0 0 0
|
102 |
-
3]
|
103 |
-
[ 3 0 0 0 0 13 0 0 31 0 0 0 0 0
|
104 |
-
0]
|
105 |
-
[ 0 0 0 0 0 5 0 0 0 27 0 0 0 0
|
106 |
-
0]
|
107 |
-
[ 0 0 0 0 2 0 12 0 0 0 0 0 0 0
|
108 |
-
0]
|
109 |
-
[ 0 0 0 0 0 1 5 2 0 0 0 10 0 0
|
110 |
-
0]
|
111 |
-
[ 0 0 0 0 0 0 0 0 0 6 0 0 0 0
|
112 |
-
0]
|
113 |
-
[ 0 0 0 0 0 0 0 0 0 6 0 0 0 0
|
114 |
-
0]
|
115 |
-
[ 2 0 16 4 10 5 4 0 1 6 0 0 0 0
|
116 |
-
2452]] |
|
117 |
-
| 0.4122 | 2.0 | 1196 | 0.2071 | 0.9561 | 0.9456 | 0.9457 | [[ 100 0 0 0 0 0 0 0 0 0 0 0 0 0
|
118 |
-
0]
|
119 |
-
[ 36 22 0 0 0 0 0 0 0 0 0 0 0 0
|
120 |
-
0]
|
121 |
-
[ 0 0 52 0 0 0 0 0 0 0 0 0 0 0
|
122 |
-
8]
|
123 |
-
[ 0 0 0 33 0 0 0 0 2 0 0 0 0 0
|
124 |
-
0]
|
125 |
-
[ 0 0 1 0 66 0 0 0 0 0 2 0 0 0
|
126 |
-
7]
|
127 |
-
[ 0 0 0 1 0 53 0 0 1 0 0 0 0 0
|
128 |
-
0]
|
129 |
-
[ 0 0 0 0 0 0 39 0 0 0 0 0 0 0
|
130 |
-
2]
|
131 |
-
[ 0 0 0 0 0 0 6 33 0 0 0 0 0 0
|
132 |
-
2]
|
133 |
-
[ 1 0 0 0 0 1 0 0 45 0 0 0 0 0
|
134 |
-
0]
|
135 |
-
[ 0 0 0 1 0 0 0 0 0 30 0 0 0 1
|
136 |
-
0]
|
137 |
-
[ 0 0 0 0 2 0 6 0 0 0 6 0 0 0
|
138 |
-
0]
|
139 |
-
[ 0 0 0 0 0 0 5 0 0 0 0 13 0 0
|
140 |
-
0]
|
141 |
-
[ 0 0 0 0 0 0 0 0 0 3 0 0 3 0
|
142 |
-
0]
|
143 |
-
[ 0 0 0 0 0 0 0 0 0 2 0 0 1 3
|
144 |
-
0]
|
145 |
-
[ 3 0 30 7 14 1 8 0 7 4 0 0 2 1
|
146 |
-
2423]] |
|
147 |
-
| 0.2816 | 3.0 | 1794 | 0.2004 | 0.9566 | 0.9508 | 0.9518 | [[ 97 3 0 0 0 0 0 0 0 0 0 0 0 0
|
148 |
-
0]
|
149 |
-
[ 25 33 0 0 0 0 0 0 0 0 0 0 0 0
|
150 |
-
0]
|
151 |
-
[ 0 0 50 0 0 0 0 0 0 0 0 0 0 0
|
152 |
-
10]
|
153 |
-
[ 0 0 0 32 0 0 0 0 2 1 0 0 0 0
|
154 |
-
0]
|
155 |
-
[ 0 0 0 0 67 0 0 0 0 0 0 0 0 0
|
156 |
-
9]
|
157 |
-
[ 0 0 0 0 0 53 0 0 1 1 0 0 0 0
|
158 |
-
0]
|
159 |
-
[ 0 0 0 0 0 0 35 1 0 0 3 0 0 0
|
160 |
-
2]
|
161 |
-
[ 0 0 0 0 0 0 3 34 0 0 2 0 0 0
|
162 |
-
2]
|
163 |
-
[ 1 0 0 0 0 1 0 0 43 2 0 0 0 0
|
164 |
-
0]
|
165 |
-
[ 0 0 0 1 0 0 0 0 0 31 0 0 0 0
|
166 |
-
0]
|
167 |
-
[ 0 0 0 0 2 0 0 0 0 0 12 0 0 0
|
168 |
-
0]
|
169 |
-
[ 0 0 0 0 0 0 0 2 0 0 1 15 0 0
|
170 |
-
0]
|
171 |
-
[ 0 0 0 0 0 0 0 0 0 0 0 0 5 0
|
172 |
-
1]
|
173 |
-
[ 0 0 0 0 0 0 0 0 0 1 0 0 0 5
|
174 |
-
0]
|
175 |
-
[ 4 0 23 6 18 1 6 0 7 3 3 0 3 1
|
176 |
-
2425]] |
|
177 |
-
| 0.2272 | 4.0 | 2392 | 0.1930 | 0.9651 | 0.9595 | 0.9606 | [[ 99 1 0 0 0 0 0 0 0 0 0 0 0 0
|
178 |
-
0]
|
179 |
-
[ 19 39 0 0 0 0 0 0 0 0 0 0 0 0
|
180 |
-
0]
|
181 |
-
[ 0 0 51 0 0 0 0 0 0 0 0 0 0 0
|
182 |
-
9]
|
183 |
-
[ 0 0 0 34 0 0 0 0 1 0 0 0 0 0
|
184 |
-
0]
|
185 |
-
[ 0 0 1 0 64 0 0 0 0 0 0 0 0 0
|
186 |
-
11]
|
187 |
-
[ 0 0 0 1 0 53 0 0 1 0 0 0 0 0
|
188 |
-
0]
|
189 |
-
[ 0 0 0 0 0 0 35 3 0 0 0 0 0 0
|
190 |
-
3]
|
191 |
-
[ 0 0 0 0 0 0 0 39 0 0 0 0 0 0
|
192 |
-
2]
|
193 |
-
[ 0 0 0 1 0 0 0 0 46 0 0 0 0 0
|
194 |
-
0]
|
195 |
-
[ 0 0 0 1 0 0 0 0 1 30 0 0 0 0
|
196 |
-
0]
|
197 |
-
[ 0 0 0 0 2 0 0 3 0 0 9 0 0 0
|
198 |
-
0]
|
199 |
-
[ 0 0 0 0 0 0 0 0 0 0 1 17 0 0
|
200 |
-
0]
|
201 |
-
[ 0 0 0 1 0 0 0 0 0 0 0 0 5 0
|
202 |
-
0]
|
203 |
-
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 6
|
204 |
-
0]
|
205 |
-
[ 2 0 33 7 6 1 1 2 6 0 1 0 2 2
|
206 |
-
2437]] |
|
207 |
-
| 0.1854 | 5.0 | 2990 | 0.2301 | 0.9593 | 0.9501 | 0.9529 | [[ 95 5 0 0 0 0 0 0 0 0 0 0 0 0
|
208 |
-
0]
|
209 |
-
[ 17 41 0 0 0 0 0 0 0 0 0 0 0 0
|
210 |
-
0]
|
211 |
-
[ 0 0 51 0 0 0 0 0 0 0 0 0 0 0
|
212 |
-
9]
|
213 |
-
[ 0 0 0 35 0 0 0 0 0 0 0 0 0 0
|
214 |
-
0]
|
215 |
-
[ 0 0 2 0 68 0 0 0 0 0 0 0 0 0
|
216 |
-
6]
|
217 |
-
[ 0 0 0 1 0 54 0 0 0 0 0 0 0 0
|
218 |
-
0]
|
219 |
-
[ 0 0 0 0 0 0 35 0 0 0 3 0 0 0
|
220 |
-
3]
|
221 |
-
[ 0 0 0 0 0 0 0 34 0 0 5 0 0 0
|
222 |
-
2]
|
223 |
-
[ 0 0 0 2 0 1 0 0 44 0 0 0 0 0
|
224 |
-
0]
|
225 |
-
[ 0 0 0 0 0 1 0 0 0 31 0 0 0 0
|
226 |
-
0]
|
227 |
-
[ 0 0 0 0 2 0 0 0 0 0 12 0 0 0
|
228 |
-
0]
|
229 |
-
[ 0 0 0 0 0 0 0 2 0 0 1 15 0 0
|
230 |
-
0]
|
231 |
-
[ 0 0 0 1 0 0 0 0 0 0 0 0 5 0
|
232 |
-
0]
|
233 |
-
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 6
|
234 |
-
0]
|
235 |
-
[ 5 0 40 9 19 2 3 1 4 1 3 0 3 1
|
236 |
-
2409]] |
|
237 |
-
| 0.1064 | 6.0 | 3588 | 0.2330 | 0.9593 | 0.9518 | 0.9539 | [[ 97 3 0 0 0 0 0 0 0 0 0 0 0 0
|
238 |
-
0]
|
239 |
-
[ 18 40 0 0 0 0 0 0 0 0 0 0 0 0
|
240 |
-
0]
|
241 |
-
[ 0 0 50 0 0 0 0 0 0 0 0 0 0 0
|
242 |
-
10]
|
243 |
-
[ 0 0 0 32 0 0 0 0 2 1 0 0 0 0
|
244 |
-
0]
|
245 |
-
[ 0 0 1 0 67 0 0 0 0 0 0 0 0 0
|
246 |
-
8]
|
247 |
-
[ 0 0 0 0 0 52 0 0 0 2 0 0 0 0
|
248 |
-
1]
|
249 |
-
[ 0 0 0 0 0 0 37 1 0 0 0 0 0 0
|
250 |
-
3]
|
251 |
-
[ 0 0 0 0 0 0 4 35 0 0 0 0 0 0
|
252 |
-
2]
|
253 |
-
[ 0 0 0 0 0 1 0 0 44 2 0 0 0 0
|
254 |
-
0]
|
255 |
-
[ 0 0 0 0 0 0 0 0 0 32 0 0 0 0
|
256 |
-
0]
|
257 |
-
[ 0 0 0 0 2 0 0 2 0 0 10 0 0 0
|
258 |
-
0]
|
259 |
-
[ 0 0 0 0 0 0 0 1 0 0 1 16 0 0
|
260 |
-
0]
|
261 |
-
[ 0 0 0 0 0 0 0 0 0 0 0 0 6 0
|
262 |
-
0]
|
263 |
-
[ 0 0 0 0 0 0 0 0 0 1 0 0 0 5
|
264 |
-
0]
|
265 |
-
[ 3 0 43 3 16 0 4 0 5 2 2 0 4 1
|
266 |
-
2417]] |
|
267 |
-
| 0.0756 | 7.0 | 4186 | 0.2207 | 0.9641 | 0.9592 | 0.9606 | [[ 95 5 0 0 0 0 0 0 0 0 0 0 0 0
|
268 |
-
0]
|
269 |
-
[ 16 42 0 0 0 0 0 0 0 0 0 0 0 0
|
270 |
-
0]
|
271 |
-
[ 0 0 51 0 0 0 0 0 0 0 0 0 0 0
|
272 |
-
9]
|
273 |
-
[ 0 0 0 32 0 0 0 0 2 1 0 0 0 0
|
274 |
-
0]
|
275 |
-
[ 0 0 1 0 66 0 0 0 0 0 0 0 0 0
|
276 |
-
9]
|
277 |
-
[ 0 0 0 0 0 53 0 0 1 1 0 0 0 0
|
278 |
-
0]
|
279 |
-
[ 0 0 0 0 0 0 35 2 0 0 0 1 0 0
|
280 |
-
3]
|
281 |
-
[ 0 0 0 0 0 0 2 36 0 0 0 1 0 0
|
282 |
-
2]
|
283 |
-
[ 0 0 0 0 0 0 0 0 47 0 0 0 0 0
|
284 |
-
0]
|
285 |
-
[ 0 0 0 0 0 0 0 0 0 32 0 0 0 0
|
286 |
-
0]
|
287 |
-
[ 0 0 0 0 0 0 2 0 0 0 12 0 0 0
|
288 |
-
0]
|
289 |
-
[ 0 0 0 0 0 0 0 1 0 0 1 16 0 0
|
290 |
-
0]
|
291 |
-
[ 0 0 0 0 0 0 0 0 0 0 0 0 6 0
|
292 |
-
0]
|
293 |
-
[ 0 0 0 0 0 0 0 0 0 1 0 0 0 5
|
294 |
-
0]
|
295 |
-
[ 3 0 35 3 7 0 2 1 7 0 2 0 3 2
|
296 |
-
2435]] |
|
297 |
-
| 0.0815 | 8.0 | 4784 | 0.2203 | 0.9651 | 0.9615 | 0.9621 | [[ 99 1 0 0 0 0 0 0 0 0 0 0 0 0
|
298 |
-
0]
|
299 |
-
[ 19 39 0 0 0 0 0 0 0 0 0 0 0 0
|
300 |
-
0]
|
301 |
-
[ 0 0 50 0 0 0 0 0 0 0 0 0 0 0
|
302 |
-
10]
|
303 |
-
[ 0 0 0 33 0 0 0 0 1 1 0 0 0 0
|
304 |
-
0]
|
305 |
-
[ 0 0 1 0 63 0 0 0 0 0 0 0 0 0
|
306 |
-
12]
|
307 |
-
[ 0 0 0 0 0 53 0 0 1 1 0 0 0 0
|
308 |
-
0]
|
309 |
-
[ 0 0 0 0 0 0 36 1 0 0 0 0 0 0
|
310 |
-
4]
|
311 |
-
[ 0 0 0 0 0 0 3 35 0 0 0 0 0 0
|
312 |
-
3]
|
313 |
-
[ 0 0 0 0 0 1 0 0 45 0 0 1 0 0
|
314 |
-
0]
|
315 |
-
[ 0 0 0 0 0 0 0 0 0 31 0 0 0 0
|
316 |
-
1]
|
317 |
-
[ 0 0 0 0 2 0 0 2 0 0 10 0 0 0
|
318 |
-
0]
|
319 |
-
[ 0 0 0 0 0 0 0 1 0 0 1 16 0 0
|
320 |
-
0]
|
321 |
-
[ 0 0 0 0 0 0 0 0 0 0 0 0 6 0
|
322 |
-
0]
|
323 |
-
[ 0 0 0 0 0 0 0 0 0 1 0 0 0 5
|
324 |
-
0]
|
325 |
-
[ 2 0 31 2 7 0 2 0 3 0 1 0 2 1
|
326 |
-
2449]] |
|
327 |
-
| 0.0677 | 9.0 | 5382 | 0.2214 | 0.9636 | 0.9586 | 0.9602 | [[ 93 6 0 0 0 0 0 0 0 0 0 0 0 0
|
328 |
-
1]
|
329 |
-
[ 12 46 0 0 0 0 0 0 0 0 0 0 0 0
|
330 |
-
0]
|
331 |
-
[ 0 0 51 0 0 0 0 0 0 0 0 0 0 0
|
332 |
-
9]
|
333 |
-
[ 0 0 0 33 0 0 0 0 1 1 0 0 0 0
|
334 |
-
0]
|
335 |
-
[ 0 0 1 0 66 0 0 0 0 0 0 0 0 0
|
336 |
-
9]
|
337 |
-
[ 0 0 0 0 0 53 0 0 1 1 0 0 0 0
|
338 |
-
0]
|
339 |
-
[ 0 0 0 0 0 0 37 1 0 0 0 0 0 0
|
340 |
-
3]
|
341 |
-
[ 0 0 0 0 0 0 4 35 0 0 0 0 0 0
|
342 |
-
2]
|
343 |
-
[ 0 0 0 0 0 1 0 0 46 0 0 0 0 0
|
344 |
-
0]
|
345 |
-
[ 0 0 0 0 0 0 0 0 0 32 0 0 0 0
|
346 |
-
0]
|
347 |
-
[ 0 0 0 0 0 0 0 2 0 0 12 0 0 0
|
348 |
-
0]
|
349 |
-
[ 0 0 0 0 0 0 0 1 0 0 1 16 0 0
|
350 |
-
0]
|
351 |
-
[ 0 0 0 0 0 0 0 0 0 1 0 0 5 0
|
352 |
-
0]
|
353 |
-
[ 0 0 0 0 0 0 0 0 0 1 0 0 0 5
|
354 |
-
0]
|
355 |
-
[ 2 0 37 3 10 0 4 0 7 0 2 0 3 1
|
356 |
-
2431]] |
|
357 |
-
| 0.0579 | 10.0 | 5980 | 0.2261 | 0.9637 | 0.9582 | 0.9601 | [[ 93 7 0 0 0 0 0 0 0 0 0 0 0 0
|
358 |
-
0]
|
359 |
-
[ 9 49 0 0 0 0 0 0 0 0 0 0 0 0
|
360 |
-
0]
|
361 |
-
[ 0 0 51 0 0 0 0 0 0 0 0 0 0 0
|
362 |
-
9]
|
363 |
-
[ 0 0 0 33 0 0 0 0 1 1 0 0 0 0
|
364 |
-
0]
|
365 |
-
[ 0 0 1 0 66 0 0 0 0 0 0 0 0 0
|
366 |
-
9]
|
367 |
-
[ 0 0 0 0 0 53 0 0 1 1 0 0 0 0
|
368 |
-
0]
|
369 |
-
[ 0 0 0 0 0 0 37 1 0 0 0 0 0 0
|
370 |
-
3]
|
371 |
-
[ 0 0 0 0 0 0 4 35 0 0 0 0 0 0
|
372 |
-
2]
|
373 |
-
[ 0 0 0 0 0 1 0 0 46 0 0 0 0 0
|
374 |
-
0]
|
375 |
-
[ 0 0 0 0 0 0 0 0 0 32 0 0 0 0
|
376 |
-
0]
|
377 |
-
[ 0 0 0 0 0 0 0 2 0 0 12 0 0 0
|
378 |
-
0]
|
379 |
-
[ 0 0 0 0 0 0 0 1 0 0 1 16 0 0
|
380 |
-
0]
|
381 |
-
[ 0 0 0 0 0 0 0 0 0 1 0 0 5 0
|
382 |
-
0]
|
383 |
-
[ 0 0 0 0 0 0 0 0 0 1 0 0 0 5
|
384 |
-
0]
|
385 |
-
[ 2 0 39 3 12 0 4 0 6 1 2 0 3 1
|
386 |
-
2427]] |
|
387 |
|
388 |
|
389 |
### Framework versions
|
@@ -391,4 +103,4 @@ The following hyperparameters were used during training:
|
|
391 |
- Transformers 4.44.2
|
392 |
- Pytorch 2.1.2
|
393 |
- Datasets 2.19.2
|
394 |
-
- Tokenizers 0.19.1
|
|
|
11 |
model-index:
|
12 |
- name: fine-tuned-distilbert-autofill
|
13 |
results: []
|
14 |
+
datasets:
|
15 |
+
- vazish/autofill_15_labels
|
16 |
---
|
17 |
|
18 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
84 |
|
85 |
### Training results
|
86 |
|
87 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|
88 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
|
89 |
+
| 0.902 | 1.0 | 598 | 0.2462 | 0.9202 | 0.9304 | 0.9208 |
|
90 |
+
| 0.4122 | 2.0 | 1196 | 0.2071 | 0.9561 | 0.9456 | 0.9457 |
|
91 |
+
| 0.2816 | 3.0 | 1794 | 0.2004 | 0.9566 | 0.9508 | 0.9518 |
|
92 |
+
| 0.2272 | 4.0 | 2392 | 0.1930 | 0.9651 | 0.9595 | 0.9606 |
|
93 |
+
| 0.1854 | 5.0 | 2990 | 0.2301 | 0.9593 | 0.9501 | 0.9529 |
|
94 |
+
| 0.1064 | 6.0 | 3588 | 0.2330 | 0.9593 | 0.9518 | 0.9539 |
|
95 |
+
| 0.0756 | 7.0 | 4186 | 0.2207 | 0.9641 | 0.9592 | 0.9606 |
|
96 |
+
| 0.0815 | 8.0 | 4784 | 0.2203 | 0.9651 | 0.9615 | 0.9621 |
|
97 |
+
| 0.0677 | 9.0 | 5382 | 0.2214 | 0.9636 | 0.9586 | 0.9602 |
|
98 |
+
| 0.0579 | 10.0 | 5980 | 0.2261 | 0.9637 | 0.9582 | 0.9601 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
### Framework versions
|
|
|
103 |
- Transformers 4.44.2
|
104 |
- Pytorch 2.1.2
|
105 |
- Datasets 2.19.2
|
106 |
+
- Tokenizers 0.19.1
|