vazish commited on
Commit
d92ada5
·
verified ·
1 Parent(s): 100d7e3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -303
README.md CHANGED
@@ -11,6 +11,8 @@ metrics:
11
  model-index:
12
  - name: fine-tuned-distilbert-autofill
13
  results: []
 
 
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -82,308 +84,18 @@ The following hyperparameters were used during training:
82
 
83
  ### Training results
84
 
85
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Confusion Matrix |
86
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
87
- | 0.902 | 1.0 | 598 | 0.2462 | 0.9202 | 0.9304 | 0.9208 | [[ 100 0 0 0 0 0 0 0 0 0 0 0 0 0
88
- 0]
89
- [ 58 0 0 0 0 0 0 0 0 0 0 0 0 0
90
- 0]
91
- [ 0 0 46 0 0 0 0 0 0 0 0 0 0 0
92
- 14]
93
- [ 0 0 0 32 0 3 0 0 0 0 0 0 0 0
94
- 0]
95
- [ 0 0 0 0 60 0 0 0 0 0 0 0 0 0
96
- 16]
97
- [ 0 0 0 0 0 55 0 0 0 0 0 0 0 0
98
- 0]
99
- [ 0 0 0 0 0 0 38 0 0 0 0 0 0 0
100
- 3]
101
- [ 0 0 0 0 0 0 15 23 0 0 0 0 0 0
102
- 3]
103
- [ 3 0 0 0 0 13 0 0 31 0 0 0 0 0
104
- 0]
105
- [ 0 0 0 0 0 5 0 0 0 27 0 0 0 0
106
- 0]
107
- [ 0 0 0 0 2 0 12 0 0 0 0 0 0 0
108
- 0]
109
- [ 0 0 0 0 0 1 5 2 0 0 0 10 0 0
110
- 0]
111
- [ 0 0 0 0 0 0 0 0 0 6 0 0 0 0
112
- 0]
113
- [ 0 0 0 0 0 0 0 0 0 6 0 0 0 0
114
- 0]
115
- [ 2 0 16 4 10 5 4 0 1 6 0 0 0 0
116
- 2452]] |
117
- | 0.4122 | 2.0 | 1196 | 0.2071 | 0.9561 | 0.9456 | 0.9457 | [[ 100 0 0 0 0 0 0 0 0 0 0 0 0 0
118
- 0]
119
- [ 36 22 0 0 0 0 0 0 0 0 0 0 0 0
120
- 0]
121
- [ 0 0 52 0 0 0 0 0 0 0 0 0 0 0
122
- 8]
123
- [ 0 0 0 33 0 0 0 0 2 0 0 0 0 0
124
- 0]
125
- [ 0 0 1 0 66 0 0 0 0 0 2 0 0 0
126
- 7]
127
- [ 0 0 0 1 0 53 0 0 1 0 0 0 0 0
128
- 0]
129
- [ 0 0 0 0 0 0 39 0 0 0 0 0 0 0
130
- 2]
131
- [ 0 0 0 0 0 0 6 33 0 0 0 0 0 0
132
- 2]
133
- [ 1 0 0 0 0 1 0 0 45 0 0 0 0 0
134
- 0]
135
- [ 0 0 0 1 0 0 0 0 0 30 0 0 0 1
136
- 0]
137
- [ 0 0 0 0 2 0 6 0 0 0 6 0 0 0
138
- 0]
139
- [ 0 0 0 0 0 0 5 0 0 0 0 13 0 0
140
- 0]
141
- [ 0 0 0 0 0 0 0 0 0 3 0 0 3 0
142
- 0]
143
- [ 0 0 0 0 0 0 0 0 0 2 0 0 1 3
144
- 0]
145
- [ 3 0 30 7 14 1 8 0 7 4 0 0 2 1
146
- 2423]] |
147
- | 0.2816 | 3.0 | 1794 | 0.2004 | 0.9566 | 0.9508 | 0.9518 | [[ 97 3 0 0 0 0 0 0 0 0 0 0 0 0
148
- 0]
149
- [ 25 33 0 0 0 0 0 0 0 0 0 0 0 0
150
- 0]
151
- [ 0 0 50 0 0 0 0 0 0 0 0 0 0 0
152
- 10]
153
- [ 0 0 0 32 0 0 0 0 2 1 0 0 0 0
154
- 0]
155
- [ 0 0 0 0 67 0 0 0 0 0 0 0 0 0
156
- 9]
157
- [ 0 0 0 0 0 53 0 0 1 1 0 0 0 0
158
- 0]
159
- [ 0 0 0 0 0 0 35 1 0 0 3 0 0 0
160
- 2]
161
- [ 0 0 0 0 0 0 3 34 0 0 2 0 0 0
162
- 2]
163
- [ 1 0 0 0 0 1 0 0 43 2 0 0 0 0
164
- 0]
165
- [ 0 0 0 1 0 0 0 0 0 31 0 0 0 0
166
- 0]
167
- [ 0 0 0 0 2 0 0 0 0 0 12 0 0 0
168
- 0]
169
- [ 0 0 0 0 0 0 0 2 0 0 1 15 0 0
170
- 0]
171
- [ 0 0 0 0 0 0 0 0 0 0 0 0 5 0
172
- 1]
173
- [ 0 0 0 0 0 0 0 0 0 1 0 0 0 5
174
- 0]
175
- [ 4 0 23 6 18 1 6 0 7 3 3 0 3 1
176
- 2425]] |
177
- | 0.2272 | 4.0 | 2392 | 0.1930 | 0.9651 | 0.9595 | 0.9606 | [[ 99 1 0 0 0 0 0 0 0 0 0 0 0 0
178
- 0]
179
- [ 19 39 0 0 0 0 0 0 0 0 0 0 0 0
180
- 0]
181
- [ 0 0 51 0 0 0 0 0 0 0 0 0 0 0
182
- 9]
183
- [ 0 0 0 34 0 0 0 0 1 0 0 0 0 0
184
- 0]
185
- [ 0 0 1 0 64 0 0 0 0 0 0 0 0 0
186
- 11]
187
- [ 0 0 0 1 0 53 0 0 1 0 0 0 0 0
188
- 0]
189
- [ 0 0 0 0 0 0 35 3 0 0 0 0 0 0
190
- 3]
191
- [ 0 0 0 0 0 0 0 39 0 0 0 0 0 0
192
- 2]
193
- [ 0 0 0 1 0 0 0 0 46 0 0 0 0 0
194
- 0]
195
- [ 0 0 0 1 0 0 0 0 1 30 0 0 0 0
196
- 0]
197
- [ 0 0 0 0 2 0 0 3 0 0 9 0 0 0
198
- 0]
199
- [ 0 0 0 0 0 0 0 0 0 0 1 17 0 0
200
- 0]
201
- [ 0 0 0 1 0 0 0 0 0 0 0 0 5 0
202
- 0]
203
- [ 0 0 0 0 0 0 0 0 0 0 0 0 0 6
204
- 0]
205
- [ 2 0 33 7 6 1 1 2 6 0 1 0 2 2
206
- 2437]] |
207
- | 0.1854 | 5.0 | 2990 | 0.2301 | 0.9593 | 0.9501 | 0.9529 | [[ 95 5 0 0 0 0 0 0 0 0 0 0 0 0
208
- 0]
209
- [ 17 41 0 0 0 0 0 0 0 0 0 0 0 0
210
- 0]
211
- [ 0 0 51 0 0 0 0 0 0 0 0 0 0 0
212
- 9]
213
- [ 0 0 0 35 0 0 0 0 0 0 0 0 0 0
214
- 0]
215
- [ 0 0 2 0 68 0 0 0 0 0 0 0 0 0
216
- 6]
217
- [ 0 0 0 1 0 54 0 0 0 0 0 0 0 0
218
- 0]
219
- [ 0 0 0 0 0 0 35 0 0 0 3 0 0 0
220
- 3]
221
- [ 0 0 0 0 0 0 0 34 0 0 5 0 0 0
222
- 2]
223
- [ 0 0 0 2 0 1 0 0 44 0 0 0 0 0
224
- 0]
225
- [ 0 0 0 0 0 1 0 0 0 31 0 0 0 0
226
- 0]
227
- [ 0 0 0 0 2 0 0 0 0 0 12 0 0 0
228
- 0]
229
- [ 0 0 0 0 0 0 0 2 0 0 1 15 0 0
230
- 0]
231
- [ 0 0 0 1 0 0 0 0 0 0 0 0 5 0
232
- 0]
233
- [ 0 0 0 0 0 0 0 0 0 0 0 0 0 6
234
- 0]
235
- [ 5 0 40 9 19 2 3 1 4 1 3 0 3 1
236
- 2409]] |
237
- | 0.1064 | 6.0 | 3588 | 0.2330 | 0.9593 | 0.9518 | 0.9539 | [[ 97 3 0 0 0 0 0 0 0 0 0 0 0 0
238
- 0]
239
- [ 18 40 0 0 0 0 0 0 0 0 0 0 0 0
240
- 0]
241
- [ 0 0 50 0 0 0 0 0 0 0 0 0 0 0
242
- 10]
243
- [ 0 0 0 32 0 0 0 0 2 1 0 0 0 0
244
- 0]
245
- [ 0 0 1 0 67 0 0 0 0 0 0 0 0 0
246
- 8]
247
- [ 0 0 0 0 0 52 0 0 0 2 0 0 0 0
248
- 1]
249
- [ 0 0 0 0 0 0 37 1 0 0 0 0 0 0
250
- 3]
251
- [ 0 0 0 0 0 0 4 35 0 0 0 0 0 0
252
- 2]
253
- [ 0 0 0 0 0 1 0 0 44 2 0 0 0 0
254
- 0]
255
- [ 0 0 0 0 0 0 0 0 0 32 0 0 0 0
256
- 0]
257
- [ 0 0 0 0 2 0 0 2 0 0 10 0 0 0
258
- 0]
259
- [ 0 0 0 0 0 0 0 1 0 0 1 16 0 0
260
- 0]
261
- [ 0 0 0 0 0 0 0 0 0 0 0 0 6 0
262
- 0]
263
- [ 0 0 0 0 0 0 0 0 0 1 0 0 0 5
264
- 0]
265
- [ 3 0 43 3 16 0 4 0 5 2 2 0 4 1
266
- 2417]] |
267
- | 0.0756 | 7.0 | 4186 | 0.2207 | 0.9641 | 0.9592 | 0.9606 | [[ 95 5 0 0 0 0 0 0 0 0 0 0 0 0
268
- 0]
269
- [ 16 42 0 0 0 0 0 0 0 0 0 0 0 0
270
- 0]
271
- [ 0 0 51 0 0 0 0 0 0 0 0 0 0 0
272
- 9]
273
- [ 0 0 0 32 0 0 0 0 2 1 0 0 0 0
274
- 0]
275
- [ 0 0 1 0 66 0 0 0 0 0 0 0 0 0
276
- 9]
277
- [ 0 0 0 0 0 53 0 0 1 1 0 0 0 0
278
- 0]
279
- [ 0 0 0 0 0 0 35 2 0 0 0 1 0 0
280
- 3]
281
- [ 0 0 0 0 0 0 2 36 0 0 0 1 0 0
282
- 2]
283
- [ 0 0 0 0 0 0 0 0 47 0 0 0 0 0
284
- 0]
285
- [ 0 0 0 0 0 0 0 0 0 32 0 0 0 0
286
- 0]
287
- [ 0 0 0 0 0 0 2 0 0 0 12 0 0 0
288
- 0]
289
- [ 0 0 0 0 0 0 0 1 0 0 1 16 0 0
290
- 0]
291
- [ 0 0 0 0 0 0 0 0 0 0 0 0 6 0
292
- 0]
293
- [ 0 0 0 0 0 0 0 0 0 1 0 0 0 5
294
- 0]
295
- [ 3 0 35 3 7 0 2 1 7 0 2 0 3 2
296
- 2435]] |
297
- | 0.0815 | 8.0 | 4784 | 0.2203 | 0.9651 | 0.9615 | 0.9621 | [[ 99 1 0 0 0 0 0 0 0 0 0 0 0 0
298
- 0]
299
- [ 19 39 0 0 0 0 0 0 0 0 0 0 0 0
300
- 0]
301
- [ 0 0 50 0 0 0 0 0 0 0 0 0 0 0
302
- 10]
303
- [ 0 0 0 33 0 0 0 0 1 1 0 0 0 0
304
- 0]
305
- [ 0 0 1 0 63 0 0 0 0 0 0 0 0 0
306
- 12]
307
- [ 0 0 0 0 0 53 0 0 1 1 0 0 0 0
308
- 0]
309
- [ 0 0 0 0 0 0 36 1 0 0 0 0 0 0
310
- 4]
311
- [ 0 0 0 0 0 0 3 35 0 0 0 0 0 0
312
- 3]
313
- [ 0 0 0 0 0 1 0 0 45 0 0 1 0 0
314
- 0]
315
- [ 0 0 0 0 0 0 0 0 0 31 0 0 0 0
316
- 1]
317
- [ 0 0 0 0 2 0 0 2 0 0 10 0 0 0
318
- 0]
319
- [ 0 0 0 0 0 0 0 1 0 0 1 16 0 0
320
- 0]
321
- [ 0 0 0 0 0 0 0 0 0 0 0 0 6 0
322
- 0]
323
- [ 0 0 0 0 0 0 0 0 0 1 0 0 0 5
324
- 0]
325
- [ 2 0 31 2 7 0 2 0 3 0 1 0 2 1
326
- 2449]] |
327
- | 0.0677 | 9.0 | 5382 | 0.2214 | 0.9636 | 0.9586 | 0.9602 | [[ 93 6 0 0 0 0 0 0 0 0 0 0 0 0
328
- 1]
329
- [ 12 46 0 0 0 0 0 0 0 0 0 0 0 0
330
- 0]
331
- [ 0 0 51 0 0 0 0 0 0 0 0 0 0 0
332
- 9]
333
- [ 0 0 0 33 0 0 0 0 1 1 0 0 0 0
334
- 0]
335
- [ 0 0 1 0 66 0 0 0 0 0 0 0 0 0
336
- 9]
337
- [ 0 0 0 0 0 53 0 0 1 1 0 0 0 0
338
- 0]
339
- [ 0 0 0 0 0 0 37 1 0 0 0 0 0 0
340
- 3]
341
- [ 0 0 0 0 0 0 4 35 0 0 0 0 0 0
342
- 2]
343
- [ 0 0 0 0 0 1 0 0 46 0 0 0 0 0
344
- 0]
345
- [ 0 0 0 0 0 0 0 0 0 32 0 0 0 0
346
- 0]
347
- [ 0 0 0 0 0 0 0 2 0 0 12 0 0 0
348
- 0]
349
- [ 0 0 0 0 0 0 0 1 0 0 1 16 0 0
350
- 0]
351
- [ 0 0 0 0 0 0 0 0 0 1 0 0 5 0
352
- 0]
353
- [ 0 0 0 0 0 0 0 0 0 1 0 0 0 5
354
- 0]
355
- [ 2 0 37 3 10 0 4 0 7 0 2 0 3 1
356
- 2431]] |
357
- | 0.0579 | 10.0 | 5980 | 0.2261 | 0.9637 | 0.9582 | 0.9601 | [[ 93 7 0 0 0 0 0 0 0 0 0 0 0 0
358
- 0]
359
- [ 9 49 0 0 0 0 0 0 0 0 0 0 0 0
360
- 0]
361
- [ 0 0 51 0 0 0 0 0 0 0 0 0 0 0
362
- 9]
363
- [ 0 0 0 33 0 0 0 0 1 1 0 0 0 0
364
- 0]
365
- [ 0 0 1 0 66 0 0 0 0 0 0 0 0 0
366
- 9]
367
- [ 0 0 0 0 0 53 0 0 1 1 0 0 0 0
368
- 0]
369
- [ 0 0 0 0 0 0 37 1 0 0 0 0 0 0
370
- 3]
371
- [ 0 0 0 0 0 0 4 35 0 0 0 0 0 0
372
- 2]
373
- [ 0 0 0 0 0 1 0 0 46 0 0 0 0 0
374
- 0]
375
- [ 0 0 0 0 0 0 0 0 0 32 0 0 0 0
376
- 0]
377
- [ 0 0 0 0 0 0 0 2 0 0 12 0 0 0
378
- 0]
379
- [ 0 0 0 0 0 0 0 1 0 0 1 16 0 0
380
- 0]
381
- [ 0 0 0 0 0 0 0 0 0 1 0 0 5 0
382
- 0]
383
- [ 0 0 0 0 0 0 0 0 0 1 0 0 0 5
384
- 0]
385
- [ 2 0 39 3 12 0 4 0 6 1 2 0 3 1
386
- 2427]] |
387
 
388
 
389
  ### Framework versions
@@ -391,4 +103,4 @@ The following hyperparameters were used during training:
391
  - Transformers 4.44.2
392
  - Pytorch 2.1.2
393
  - Datasets 2.19.2
394
- - Tokenizers 0.19.1
 
11
  model-index:
12
  - name: fine-tuned-distilbert-autofill
13
  results: []
14
+ datasets:
15
+ - vazish/autofill_15_labels
16
  ---
17
 
18
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
84
 
85
  ### Training results
86
 
87
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
88
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
89
+ | 0.902 | 1.0 | 598 | 0.2462 | 0.9202 | 0.9304 | 0.9208 |
90
+ | 0.4122 | 2.0 | 1196 | 0.2071 | 0.9561 | 0.9456 | 0.9457 |
91
+ | 0.2816 | 3.0 | 1794 | 0.2004 | 0.9566 | 0.9508 | 0.9518 |
92
+ | 0.2272 | 4.0 | 2392 | 0.1930 | 0.9651 | 0.9595 | 0.9606 |
93
+ | 0.1854 | 5.0 | 2990 | 0.2301 | 0.9593 | 0.9501 | 0.9529 |
94
+ | 0.1064 | 6.0 | 3588 | 0.2330 | 0.9593 | 0.9518 | 0.9539 |
95
+ | 0.0756 | 7.0 | 4186 | 0.2207 | 0.9641 | 0.9592 | 0.9606 |
96
+ | 0.0815 | 8.0 | 4784 | 0.2203 | 0.9651 | 0.9615 | 0.9621 |
97
+ | 0.0677 | 9.0 | 5382 | 0.2214 | 0.9636 | 0.9586 | 0.9602 |
98
+ | 0.0579 | 10.0 | 5980 | 0.2261 | 0.9637 | 0.9582 | 0.9601 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
 
101
  ### Framework versions
 
103
  - Transformers 4.44.2
104
  - Pytorch 2.1.2
105
  - Datasets 2.19.2
106
+ - Tokenizers 0.19.1