update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- et
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- mozilla-foundation/common_voice_8_0
|
8 |
+
- generated_from_trainer
|
9 |
+
datasets:
|
10 |
+
- common_voice
|
11 |
+
model-index:
|
12 |
+
- name: ''
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
#
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ET dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.8824
|
24 |
+
- Wer: 0.5246
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 7e-05
|
44 |
+
- train_batch_size: 32
|
45 |
+
- eval_batch_size: 32
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_steps: 500
|
50 |
+
- training_steps: 25000
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
56 |
+
|:-------------:|:------:|:-----:|:---------------:|:------:|
|
57 |
+
| 1.0296 | 2.79 | 500 | 0.8106 | 0.8029 |
|
58 |
+
| 0.9339 | 5.59 | 1000 | 0.7419 | 0.7932 |
|
59 |
+
| 0.8925 | 8.38 | 1500 | 0.7137 | 0.7706 |
|
60 |
+
| 0.8484 | 11.17 | 2000 | 0.7020 | 0.7677 |
|
61 |
+
| 0.7521 | 13.97 | 2500 | 0.7043 | 0.7375 |
|
62 |
+
| 0.719 | 16.76 | 3000 | 0.6617 | 0.7428 |
|
63 |
+
| 0.656 | 19.55 | 3500 | 0.6388 | 0.7202 |
|
64 |
+
| 0.6085 | 22.35 | 4000 | 0.6211 | 0.6960 |
|
65 |
+
| 0.5598 | 25.14 | 4500 | 0.6132 | 0.6644 |
|
66 |
+
| 0.4969 | 27.93 | 5000 | 0.6065 | 0.6521 |
|
67 |
+
| 0.4638 | 30.73 | 5500 | 0.6978 | 0.6577 |
|
68 |
+
| 0.4385 | 33.52 | 6000 | 0.5994 | 0.6565 |
|
69 |
+
| 0.396 | 36.31 | 6500 | 0.6170 | 0.6258 |
|
70 |
+
| 0.3861 | 39.11 | 7000 | 0.6486 | 0.6217 |
|
71 |
+
| 0.3602 | 41.9 | 7500 | 0.6508 | 0.6115 |
|
72 |
+
| 0.3251 | 44.69 | 8000 | 0.7022 | 0.6253 |
|
73 |
+
| 0.3197 | 47.49 | 8500 | 0.7706 | 0.6215 |
|
74 |
+
| 0.3013 | 50.28 | 9000 | 0.6419 | 0.5999 |
|
75 |
+
| 0.2813 | 53.07 | 9500 | 0.6908 | 0.5959 |
|
76 |
+
| 0.286 | 55.87 | 10000 | 0.7151 | 0.5916 |
|
77 |
+
| 0.2645 | 58.66 | 10500 | 0.7181 | 0.5860 |
|
78 |
+
| 0.2535 | 61.45 | 11000 | 0.7877 | 0.5979 |
|
79 |
+
| 0.247 | 64.25 | 11500 | 0.8199 | 0.6129 |
|
80 |
+
| 0.2412 | 67.04 | 12000 | 0.7679 | 0.5884 |
|
81 |
+
| 0.2404 | 69.83 | 12500 | 0.7266 | 0.5816 |
|
82 |
+
| 0.2293 | 72.63 | 13000 | 0.7928 | 0.5795 |
|
83 |
+
| 0.2176 | 75.42 | 13500 | 0.7916 | 0.5846 |
|
84 |
+
| 0.2143 | 78.21 | 14000 | 0.7954 | 0.5765 |
|
85 |
+
| 0.2185 | 81.01 | 14500 | 0.8317 | 0.5907 |
|
86 |
+
| 0.2057 | 83.8 | 15000 | 0.8016 | 0.5851 |
|
87 |
+
| 0.1895 | 86.59 | 15500 | 0.8080 | 0.5679 |
|
88 |
+
| 0.1883 | 89.39 | 16000 | 0.8103 | 0.5712 |
|
89 |
+
| 0.1802 | 92.18 | 16500 | 0.8383 | 0.5644 |
|
90 |
+
| 0.1826 | 94.97 | 17000 | 0.8799 | 0.5657 |
|
91 |
+
| 0.1717 | 97.77 | 17500 | 0.8620 | 0.5709 |
|
92 |
+
| 0.1701 | 100.56 | 18000 | 0.8717 | 0.5662 |
|
93 |
+
| 0.1623 | 103.35 | 18500 | 0.8534 | 0.5594 |
|
94 |
+
| 0.158 | 106.15 | 19000 | 0.8595 | 0.5546 |
|
95 |
+
| 0.1508 | 108.94 | 19500 | 0.8574 | 0.5545 |
|
96 |
+
| 0.142 | 111.73 | 20000 | 0.8671 | 0.5537 |
|
97 |
+
| 0.1395 | 114.53 | 20500 | 0.8436 | 0.5525 |
|
98 |
+
| 0.1373 | 117.32 | 21000 | 0.8808 | 0.5482 |
|
99 |
+
| 0.1338 | 120.11 | 21500 | 0.9024 | 0.5418 |
|
100 |
+
| 0.1278 | 122.91 | 22000 | 0.9143 | 0.5409 |
|
101 |
+
| 0.1207 | 125.7 | 22500 | 0.8917 | 0.5358 |
|
102 |
+
| 0.1203 | 128.49 | 23000 | 0.9041 | 0.5341 |
|
103 |
+
| 0.1083 | 131.28 | 23500 | 0.8884 | 0.5341 |
|
104 |
+
| 0.1147 | 134.08 | 24000 | 0.8910 | 0.5255 |
|
105 |
+
| 0.1129 | 136.87 | 24500 | 0.8826 | 0.5241 |
|
106 |
+
| 0.1029 | 139.66 | 25000 | 0.8824 | 0.5246 |
|
107 |
+
|
108 |
+
|
109 |
+
### Framework versions
|
110 |
+
|
111 |
+
- Transformers 4.16.0.dev0
|
112 |
+
- Pytorch 1.10.1+cu102
|
113 |
+
- Datasets 1.17.1.dev0
|
114 |
+
- Tokenizers 0.11.0
|