|
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, StoppingCriteria, TextStreamer |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from typing import List, Optional, Tuple, Union |
|
from transformers.cache_utils import Cache |
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import CrossEntropyLoss |
|
from .got_vision_b import build_GOT_vit_b |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import InterpolationMode |
|
import dataclasses |
|
|
|
|
|
DEFAULT_IMAGE_TOKEN = "<image>" |
|
DEFAULT_IMAGE_PATCH_TOKEN = '<imgpad>' |
|
DEFAULT_IM_START_TOKEN = '<img>' |
|
DEFAULT_IM_END_TOKEN = '</img>' |
|
|
|
from enum import auto, Enum |
|
class SeparatorStyle(Enum): |
|
"""Different separator style.""" |
|
SINGLE = auto() |
|
TWO = auto() |
|
MPT = auto() |
|
|
|
|
|
@dataclasses.dataclass |
|
class Conversation: |
|
"""A class that keeps all conversation history.""" |
|
system: str |
|
roles: List[str] |
|
messages: List[List[str]] |
|
offset: int |
|
sep_style: SeparatorStyle = SeparatorStyle.SINGLE |
|
sep: str = "<|im_end|>" |
|
sep2: str = None |
|
version: str = "Unknown" |
|
|
|
skip_next: bool = False |
|
|
|
def get_prompt(self): |
|
if self.sep_style == SeparatorStyle.SINGLE: |
|
ret = self.system + self.sep + '\n' |
|
for role, message in self.messages: |
|
if message: |
|
if type(message) is tuple: |
|
message, _, _ = message |
|
ret += role + ": " + message + self.sep |
|
else: |
|
ret += role + ":" |
|
return ret |
|
elif self.sep_style == SeparatorStyle.TWO: |
|
seps = [self.sep, self.sep2] |
|
ret = self.system + seps[0] |
|
for i, (role, message) in enumerate(self.messages): |
|
if message: |
|
if type(message) is tuple: |
|
message, _, _ = message |
|
ret += role + ": " + message + seps[i % 2] |
|
else: |
|
ret += role + ":" |
|
return ret |
|
if self.sep_style == SeparatorStyle.MPT: |
|
if self.system: |
|
ret = self.system + self.sep |
|
else: |
|
ret = '' |
|
for role, message in self.messages: |
|
if message: |
|
if type(message) is tuple: |
|
message, _, _ = message |
|
ret += role + message + self.sep |
|
else: |
|
ret += role |
|
return ret |
|
else: |
|
raise ValueError(f"Invalid style: {self.sep_style}") |
|
|
|
|
|
def append_message(self, role, message): |
|
self.messages.append([role, message]) |
|
|
|
def copy(self): |
|
return Conversation( |
|
system=self.system, |
|
roles=self.roles, |
|
messages=[[x, y] for x, y in self.messages], |
|
offset=self.offset, |
|
sep_style=self.sep_style, |
|
sep=self.sep, |
|
sep2=self.sep2) |
|
|
|
|
|
|
|
class KeywordsStoppingCriteria(StoppingCriteria): |
|
def __init__(self, keywords, tokenizer, input_ids): |
|
self.keywords = keywords |
|
self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords] |
|
self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(keyword_id) is list and len(keyword_id) == 1] |
|
self.tokenizer = tokenizer |
|
self.start_len = None |
|
self.input_ids = input_ids |
|
|
|
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
if self.start_len is None: |
|
self.start_len = self.input_ids.shape[1] |
|
else: |
|
for keyword_id in self.keyword_ids: |
|
if output_ids[0, -1] == keyword_id: |
|
return True |
|
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0] |
|
for keyword in self.keywords: |
|
if keyword in outputs: |
|
return True |
|
return False |
|
|
|
|
|
class GOTImageEvalProcessor: |
|
def __init__(self, image_size=384, mean=None, std=None): |
|
if mean is None: |
|
mean = (0.48145466, 0.4578275, 0.40821073) |
|
if std is None: |
|
std = (0.26862954, 0.26130258, 0.27577711) |
|
|
|
self.normalize = transforms.Normalize(mean, std) |
|
|
|
self.transform = transforms.Compose( |
|
[ |
|
transforms.Resize( |
|
(image_size, image_size), interpolation=InterpolationMode.BICUBIC |
|
), |
|
transforms.ToTensor(), |
|
self.normalize, |
|
] |
|
) |
|
def __call__(self, item): |
|
return self.transform(item) |
|
|
|
|
|
|
|
class GOTConfig(Qwen2Config): |
|
model_type = "GOT" |
|
|
|
|
|
class GOTQwenModel(Qwen2Model): |
|
config_class = GOTConfig |
|
|
|
def __init__(self, config: Qwen2Config): |
|
super(GOTQwenModel, self).__init__(config) |
|
|
|
self.vision_tower_high = build_GOT_vit_b() |
|
|
|
self.mm_projector_vary = nn.Linear(1024, 1024) |
|
|
|
|
|
def initialize_vision_modules( |
|
self, |
|
vision_tower, |
|
pretrained_stage1_model=None, |
|
freeze_vision_tower=False, |
|
use_im_start_end=False, |
|
vision_select_layer=-1, |
|
dtype=torch.float16, |
|
device="cuda" |
|
): |
|
|
|
|
|
image_processor_high = GOTImageEvalProcessor(image_size=1024) |
|
|
|
self.vision_tower_high = self.vision_tower_high.to(dtype=dtype, device=device) |
|
|
|
self.mm_projector_vary = self.mm_projector_vary.to(dtype=dtype, device=device) |
|
|
|
|
|
image_token_len = 256 |
|
|
|
self.config.vision_tower = vision_tower |
|
self.config.image_token_len = image_token_len |
|
|
|
self.config.use_im_start_end = True |
|
|
|
self.config.vision_select_layer = vision_select_layer |
|
self.config.freeze_vision_tower = freeze_vision_tower |
|
|
|
return dict( |
|
image_processor_high=image_processor_high, |
|
image_token_len=image_token_len, |
|
) |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
|
|
|
orig_embeds_params = getattr(self, 'orig_embeds_params', None) |
|
if orig_embeds_params is not None: |
|
with torch.no_grad(): |
|
self.get_input_embeddings().weight[:-self.num_new_tokens] = orig_embeds_params[:-self.num_new_tokens].data |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
vision_tower_high = getattr(self, 'vision_tower_high', None) |
|
|
|
|
|
if vision_tower_high is not None and (input_ids.shape[1] != 1 or self.training) and images is not None: |
|
use_im_start_end = getattr(self.config, "use_im_start_end", -1) |
|
|
|
vision_select_layer = getattr(self.config, "vision_select_layer", -1) |
|
im_patch_token = getattr(self.config, "im_patch_token", -1) |
|
im_start_token = getattr(self.config, "im_start_token", -1) |
|
im_end_token = getattr(self.config, "im_end_token", -1) |
|
freeze_vision_tower = getattr(self.config, "freeze_vision_tower", False) |
|
|
|
im_patch_token = 151859 |
|
|
|
im_start_token = 151857 |
|
|
|
im_end_token = 151858 |
|
|
|
image_features = [] |
|
|
|
for image in images: |
|
P, C, H, W = image.shape |
|
if P == 1: |
|
with torch.set_grad_enabled(False): |
|
cnn_feature = vision_tower_high(image) |
|
cnn_feature = cnn_feature.flatten(2).permute(0, 2, 1) |
|
image_feature = self.mm_projector_vary(cnn_feature) |
|
image_features.append(image_feature) |
|
|
|
else: |
|
image_patches = torch.unbind(image) |
|
image_patches_features = [] |
|
for image_patch in image_patches: |
|
image_p = torch.stack([image_patch]) |
|
|
|
with torch.set_grad_enabled(False): |
|
cnn_feature_p = vision_tower_high(image_p) |
|
cnn_feature_p = cnn_feature_p.flatten(2).permute(0, 2, 1) |
|
image_feature_p = self.mm_projector_vary(cnn_feature_p) |
|
image_patches_features.append(image_feature_p) |
|
image_feature = torch.cat(image_patches_features, dim=1) |
|
image_features.append(image_feature) |
|
|
|
|
|
dummy_image_features_2 = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype) |
|
dummy_image_features = dummy_image_features_2 |
|
use_im_start_end = True |
|
new_input_embeds = [] |
|
for cur_input_ids, cur_input_embeds, cur_image_features in zip(input_ids, inputs_embeds, image_features): |
|
if (cur_input_ids == im_patch_token).sum() == 0: |
|
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum() |
|
new_input_embeds.append(cur_input_embeds) |
|
continue |
|
|
|
if use_im_start_end: |
|
if (cur_input_ids == im_start_token).sum() != (cur_input_ids == im_end_token).sum(): |
|
raise ValueError("The number of image start tokens and image end tokens should be the same.") |
|
|
|
image_start_tokens = torch.where(cur_input_ids == im_start_token)[0] |
|
for image_start_token_pos, per_cur_image_features in zip(image_start_tokens, cur_image_features): |
|
per_cur_image_features = per_cur_image_features.to(device=cur_input_embeds.device) |
|
num_patches = per_cur_image_features.shape[0] |
|
|
|
if cur_input_ids[image_start_token_pos + num_patches + 1] != im_end_token: |
|
raise ValueError("The image end token should follow the image start token.") |
|
|
|
cur_input_embeds = torch.cat( |
|
( |
|
cur_input_embeds[:image_start_token_pos+1], |
|
per_cur_image_features, |
|
cur_input_embeds[image_start_token_pos + num_patches + 1:] |
|
), |
|
dim=0 |
|
) |
|
|
|
|
|
new_input_embeds.append(cur_input_embeds) |
|
else: |
|
raise NotImplementedError |
|
|
|
inputs_embeds = torch.stack(new_input_embeds, dim=0) |
|
|
|
return super(GOTQwenModel, self).forward( |
|
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, use_cache=use_cache, position_ids = position_ids, |
|
output_attentions=output_attentions, output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
|
|
|
|
|
|
class GOTQwenForCausalLM(Qwen2ForCausalLM): |
|
config_class = GOTConfig |
|
|
|
|
|
def __init__(self, config): |
|
super(Qwen2ForCausalLM, self).__init__(config) |
|
self.model = GOTQwenModel(config) |
|
|
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
|
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
images=images, |
|
return_dict=return_dict |
|
|
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
|
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
|
|
if past_key_values is not None: |
|
if isinstance(past_key_values, Cache): |
|
cache_length = past_key_values.get_seq_length() |
|
past_length = past_key_values.seen_tokens |
|
max_cache_length = past_key_values.get_max_length() |
|
else: |
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
max_cache_length = None |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"images": kwargs.get("images", None), |
|
} |
|
) |
|
return model_inputs |
|
|
|
def initialize_vision_tokenizer( |
|
self, |
|
tokenizer, |
|
freeze_lm_model=False, |
|
pretrained_stage1_model=None, |
|
device="cuda" |
|
): |
|
config = self.get_model().config |
|
|
|
|
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
config.im_patch_token = 151859 |
|
|
|
config.use_im_start_end = True |
|
|
|
if config.use_im_start_end: |
|
self.resize_token_embeddings(len(tokenizer)) |
|
config.im_start_token, config.im_end_token = 151857, 151858 |
|
|
|
def load_image(self, image_file): |
|
if image_file.startswith('http') or image_file.startswith('https'): |
|
response = requests.get(image_file) |
|
image = Image.open(BytesIO(response.content)).convert('RGB') |
|
else: |
|
image = Image.open(image_file).convert('RGB') |
|
return image |
|
|
|
def disable_torch_init(self): |
|
""" |
|
Disable the redundant torch default initialization to accelerate model creation. |
|
""" |
|
import torch |
|
setattr(torch.nn.Linear, "reset_parameters", lambda self: None) |
|
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) |
|
|
|
def chat(self, tokenizer, image_file, ocr_type, vqa_question='' ,ocr_box='', ocr_color='', render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False): |
|
|
|
self.disable_torch_init() |
|
|
|
|
|
image_processor_high = GOTImageEvalProcessor(image_size=1024) |
|
|
|
use_im_start_end = True |
|
|
|
image_token_len = 256 |
|
|
|
if gradio_input: |
|
image = image_file.copy() |
|
else: |
|
image = self.load_image(image_file) |
|
|
|
w, h = image.size |
|
|
|
if ocr_type == 'format': |
|
qs = 'OCR with format: ' |
|
elif ocr_type == 'VQA': |
|
qs = 'Answer the following Question :' + str(vqa_question) |
|
else: |
|
qs = 'OCR: ' |
|
|
|
if ocr_box: |
|
bbox = eval(ocr_box) |
|
if len(bbox) == 2: |
|
bbox[0] = int(bbox[0]/w*1000) |
|
bbox[1] = int(bbox[1]/h*1000) |
|
if len(bbox) == 4: |
|
bbox[0] = int(bbox[0]/w*1000) |
|
bbox[1] = int(bbox[1]/h*1000) |
|
bbox[2] = int(bbox[2]/w*1000) |
|
bbox[3] = int(bbox[3]/h*1000) |
|
if ocr_type == 'format': |
|
qs = str(bbox) + ' ' + 'OCR with format: ' |
|
else: |
|
qs = str(bbox) + ' ' + 'OCR: ' |
|
|
|
if ocr_color: |
|
if ocr_type == 'format': |
|
qs = '[' + ocr_color + ']' + ' ' + 'OCR with format: ' |
|
else: |
|
qs = '[' + ocr_color + ']' + ' ' + 'OCR: ' |
|
|
|
if use_im_start_end: |
|
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len + DEFAULT_IM_END_TOKEN + '\n' + qs |
|
else: |
|
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs |
|
|
|
|
|
conv_mpt = Conversation( |
|
system="""<|im_start|>system |
|
You should follow the instructions carefully and explain your answers in detail.""", |
|
|
|
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), |
|
version="mpt", |
|
messages=(), |
|
offset=0, |
|
sep_style=SeparatorStyle.MPT, |
|
sep="<|im_end|>", |
|
) |
|
|
|
conv = conv_mpt.copy() |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
if print_prompt: |
|
print(prompt) |
|
|
|
inputs = tokenizer([prompt]) |
|
|
|
image_tensor_1 = image_processor_high(image) |
|
|
|
input_ids = torch.as_tensor(inputs.input_ids).cuda() |
|
|
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
if stream_flag: |
|
with torch.autocast("cuda", dtype=torch.bfloat16): |
|
output_ids = self.generate( |
|
input_ids, |
|
images=[image_tensor_1.unsqueeze(0).half().cuda()], |
|
do_sample=False, |
|
num_beams = 1, |
|
no_repeat_ngram_size = 20, |
|
streamer=streamer, |
|
max_new_tokens=4096, |
|
stopping_criteria=[stopping_criteria] |
|
) |
|
else: |
|
with torch.autocast("cuda", dtype=torch.bfloat16): |
|
output_ids = self.generate( |
|
input_ids, |
|
images=[image_tensor_1.unsqueeze(0).half().cuda()], |
|
do_sample=False, |
|
num_beams = 1, |
|
no_repeat_ngram_size = 20, |
|
|
|
max_new_tokens=4096, |
|
stopping_criteria=[stopping_criteria] |
|
) |
|
|
|
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() |
|
|
|
if outputs.endswith(stop_str): |
|
outputs = outputs[:-len(stop_str)] |
|
outputs = outputs.strip() |
|
response_str = outputs |
|
|
|
if render: |
|
print('==============rendering===============') |
|
from .render_tools import svg_to_html, content_mmd_to_html, tik_html, translation_table |
|
|
|
if '**kern' in outputs: |
|
import verovio |
|
tk = verovio.toolkit() |
|
tk.loadData(outputs) |
|
tk.setOptions({"pageWidth": 2100, "footer": 'none', |
|
'barLineWidth': 0.5, 'beamMaxSlope': 15, |
|
'staffLineWidth': 0.2, 'spacingStaff': 6}) |
|
tk.getPageCount() |
|
svg = tk.renderToSVG() |
|
svg = svg.replace("overflow=\"inherit\"", "overflow=\"visible\"") |
|
|
|
svg_to_html(svg, save_render_file) |
|
|
|
if ocr_type == 'format' and '**kern' not in outputs: |
|
|
|
|
|
if '\\begin{tikzpicture}' not in outputs: |
|
html_path_2 = save_render_file |
|
right_num = outputs.count('\\right') |
|
left_num = outputs.count('\left') |
|
|
|
if right_num != left_num: |
|
outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.') |
|
|
|
|
|
outputs = outputs.replace('"', '``').replace('$', '') |
|
|
|
outputs_list = outputs.split('\n') |
|
gt= '' |
|
for out in outputs_list: |
|
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n' |
|
|
|
gt = gt[:-2] |
|
|
|
|
|
lines = content_mmd_to_html |
|
lines = lines.split("const text =") |
|
new_web = lines[0] + 'const text =' + gt + lines[1] |
|
|
|
else: |
|
html_path_2 = save_render_file |
|
outputs = outputs.translate(translation_table) |
|
outputs_list = outputs.split('\n') |
|
gt= '' |
|
for out in outputs_list: |
|
if out: |
|
if '\\begin{tikzpicture}' not in out and '\\end{tikzpicture}' not in out: |
|
while out[-1] == ' ': |
|
out = out[:-1] |
|
if out is None: |
|
break |
|
|
|
if out: |
|
if out[-1] != ';': |
|
gt += out[:-1] + ';\n' |
|
else: |
|
gt += out + '\n' |
|
else: |
|
gt += out + '\n' |
|
|
|
|
|
lines = tik_html |
|
lines = lines.split("const text =") |
|
new_web = lines[0] + gt + lines[1] |
|
|
|
with open(html_path_2, 'w') as web_f_new: |
|
web_f_new.write(new_web) |
|
return response_str |
|
|
|
def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=1024, use_thumbnail=True): |
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
|
|
return best_ratio |
|
|
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
|
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
|
|
def chat_crop(self, tokenizer, image_file, ocr_type, render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False): |
|
|
|
self.disable_torch_init() |
|
multi_page=False |
|
|
|
|
|
image_processor_high = GOTImageEvalProcessor(image_size=1024) |
|
|
|
use_im_start_end = True |
|
|
|
|
|
image_token_len = 256 |
|
|
|
image_list = [] |
|
|
|
|
|
|
|
|
|
if multi_page: |
|
qs = 'OCR with format across multi pages: ' |
|
|
|
|
|
|
|
|
|
patches = image_file |
|
|
|
sub_images = [] |
|
for sub_image in patches: |
|
sub_images.append(self.load_image(sub_image)) |
|
|
|
ll = len(patches) |
|
|
|
|
|
|
|
else: |
|
if ocr_type == 'format': |
|
qs = 'OCR with format upon the patch reference: ' |
|
else: |
|
qs = 'OCR upon the patch reference: ' |
|
if gradio_input: |
|
img = image_file.copy() |
|
else: |
|
img = self.load_image(image_file) |
|
sub_images = self.dynamic_preprocess(img) |
|
ll = len(sub_images) |
|
|
|
for image in sub_images: |
|
image_tensor_1 = image_processor_high(image) |
|
image_list.append(image_tensor_1) |
|
|
|
|
|
image_list = torch.stack(image_list) |
|
|
|
print('====new images batch size======: \n',image_list.shape) |
|
|
|
|
|
if use_im_start_end: |
|
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len*ll + DEFAULT_IM_END_TOKEN + '\n' + qs |
|
else: |
|
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs |
|
|
|
|
|
conv_mpt = Conversation( |
|
system="""<|im_start|>system |
|
You should follow the instructions carefully and explain your answers in detail.""", |
|
|
|
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), |
|
version="mpt", |
|
messages=(), |
|
offset=0, |
|
sep_style=SeparatorStyle.MPT, |
|
sep="<|im_end|>", |
|
) |
|
|
|
conv = conv_mpt.copy() |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
if print_prompt: |
|
print(prompt) |
|
|
|
inputs = tokenizer([prompt]) |
|
|
|
input_ids = torch.as_tensor(inputs.input_ids).cuda() |
|
|
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
if stream_flag: |
|
with torch.autocast("cuda", dtype=torch.bfloat16): |
|
output_ids = self.generate( |
|
input_ids, |
|
images=[image_list.half().cuda()], |
|
do_sample=False, |
|
num_beams = 1, |
|
|
|
streamer=streamer, |
|
max_new_tokens=4096, |
|
stopping_criteria=[stopping_criteria] |
|
) |
|
else: |
|
with torch.autocast("cuda", dtype=torch.bfloat16): |
|
output_ids = self.generate( |
|
input_ids, |
|
images=[image_list.half().cuda()], |
|
do_sample=False, |
|
num_beams = 1, |
|
|
|
|
|
max_new_tokens=4096, |
|
stopping_criteria=[stopping_criteria] |
|
) |
|
|
|
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() |
|
|
|
if outputs.endswith(stop_str): |
|
outputs = outputs[:-len(stop_str)] |
|
outputs = outputs.strip() |
|
response_str = outputs |
|
|
|
if render: |
|
print('==============rendering===============') |
|
from .render_tools import content_mmd_to_html |
|
html_path_2 = save_render_file |
|
right_num = outputs.count('\\right') |
|
left_num = outputs.count('\left') |
|
|
|
if right_num != left_num: |
|
outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.') |
|
|
|
|
|
outputs = outputs.replace('"', '``').replace('$', '') |
|
|
|
outputs_list = outputs.split('\n') |
|
gt= '' |
|
for out in outputs_list: |
|
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n' |
|
|
|
gt = gt[:-2] |
|
|
|
lines = content_mmd_to_html |
|
lines = lines.split("const text =") |
|
new_web = lines[0] + 'const text =' + gt + lines[1] |
|
|
|
with open(html_path_2, 'w') as web_f_new: |
|
web_f_new.write(new_web) |
|
|
|
return response_str |