uttam333 commited on
Commit
1b9a513
·
1 Parent(s): f588ac3

End of training

Browse files
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: layoutlm-custom_no_text
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # layoutlm-custom_no_text
15
+
16
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.1523
19
+ - Noise: {'precision': 0.8811544991511036, 'recall': 0.8994800693240901, 'f1': 0.8902229845626072, 'number': 577}
20
+ - Signal: {'precision': 0.8675721561969439, 'recall': 0.8856152512998267, 'f1': 0.8765008576329331, 'number': 577}
21
+ - Overall Precision: 0.8744
22
+ - Overall Recall: 0.8925
23
+ - Overall F1: 0.8834
24
+ - Overall Accuracy: 0.9664
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 3e-05
44
+ - train_batch_size: 8
45
+ - eval_batch_size: 8
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 15
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Noise | Signal | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
56
+ | 0.3886 | 1.0 | 18 | 0.2452 | {'precision': 0.6213235294117647, 'recall': 0.58578856152513, 'f1': 0.6030330062444246, 'number': 577} | {'precision': 0.6323529411764706, 'recall': 0.5961871750433275, 'f1': 0.6137377341659233, 'number': 577} | 0.6268 | 0.5910 | 0.6084 | 0.8992 |
57
+ | 0.1673 | 2.0 | 36 | 0.1441 | {'precision': 0.7667269439421338, 'recall': 0.7348353552859619, 'f1': 0.7504424778761062, 'number': 577} | {'precision': 0.7450271247739603, 'recall': 0.7140381282495667, 'f1': 0.7292035398230089, 'number': 577} | 0.7559 | 0.7244 | 0.7398 | 0.9356 |
58
+ | 0.0959 | 3.0 | 54 | 0.1168 | {'precision': 0.8131487889273357, 'recall': 0.8145580589254766, 'f1': 0.8138528138528138, 'number': 577} | {'precision': 0.7941176470588235, 'recall': 0.7954939341421143, 'f1': 0.7948051948051947, 'number': 577} | 0.8036 | 0.8050 | 0.8043 | 0.9510 |
59
+ | 0.0622 | 4.0 | 72 | 0.1166 | {'precision': 0.8402061855670103, 'recall': 0.8474870017331022, 'f1': 0.8438308886971526, 'number': 577} | {'precision': 0.8333333333333334, 'recall': 0.8405545927209706, 'f1': 0.8369283865401207, 'number': 577} | 0.8368 | 0.8440 | 0.8404 | 0.9591 |
60
+ | 0.0424 | 5.0 | 90 | 0.1325 | {'precision': 0.8476027397260274, 'recall': 0.8578856152512998, 'f1': 0.8527131782945737, 'number': 577} | {'precision': 0.839041095890411, 'recall': 0.8492201039861352, 'f1': 0.8440999138673558, 'number': 577} | 0.8433 | 0.8536 | 0.8484 | 0.9586 |
61
+ | 0.031 | 6.0 | 108 | 0.1167 | {'precision': 0.8720136518771331, 'recall': 0.8856152512998267, 'f1': 0.878761822871883, 'number': 577} | {'precision': 0.8583617747440273, 'recall': 0.8717504332755632, 'f1': 0.8650042992261393, 'number': 577} | 0.8652 | 0.8787 | 0.8719 | 0.9628 |
62
+ | 0.0213 | 7.0 | 126 | 0.1339 | {'precision': 0.8610634648370498, 'recall': 0.8700173310225303, 'f1': 0.8655172413793105, 'number': 577} | {'precision': 0.855917667238422, 'recall': 0.8648180242634316, 'f1': 0.860344827586207, 'number': 577} | 0.8585 | 0.8674 | 0.8629 | 0.9608 |
63
+ | 0.0159 | 8.0 | 144 | 0.1335 | {'precision': 0.8692699490662139, 'recall': 0.8873483535528596, 'f1': 0.8782161234991425, 'number': 577} | {'precision': 0.8590831918505942, 'recall': 0.8769497400346621, 'f1': 0.8679245283018868, 'number': 577} | 0.8642 | 0.8821 | 0.8731 | 0.9630 |
64
+ | 0.0117 | 9.0 | 162 | 0.1489 | {'precision': 0.8686006825938567, 'recall': 0.8821490467937608, 'f1': 0.8753224419604471, 'number': 577} | {'precision': 0.8600682593856656, 'recall': 0.8734835355285961, 'f1': 0.8667239896818572, 'number': 577} | 0.8643 | 0.8778 | 0.8710 | 0.9622 |
65
+ | 0.011 | 10.0 | 180 | 0.1593 | {'precision': 0.8623063683304647, 'recall': 0.8682842287694974, 'f1': 0.8652849740932642, 'number': 577} | {'precision': 0.8519793459552496, 'recall': 0.8578856152512998, 'f1': 0.854922279792746, 'number': 577} | 0.8571 | 0.8631 | 0.8601 | 0.9600 |
66
+ | 0.0094 | 11.0 | 198 | 0.1336 | {'precision': 0.8896434634974533, 'recall': 0.9081455805892548, 'f1': 0.8987993138936535, 'number': 577} | {'precision': 0.8760611205432938, 'recall': 0.8942807625649913, 'f1': 0.8850771869639794, 'number': 577} | 0.8829 | 0.9012 | 0.8919 | 0.9686 |
67
+ | 0.0066 | 12.0 | 216 | 0.1357 | {'precision': 0.8928571428571429, 'recall': 0.9098786828422877, 'f1': 0.9012875536480687, 'number': 577} | {'precision': 0.8792517006802721, 'recall': 0.8960138648180243, 'f1': 0.8875536480686695, 'number': 577} | 0.8861 | 0.9029 | 0.8944 | 0.9692 |
68
+ | 0.0072 | 13.0 | 234 | 0.1528 | {'precision': 0.8830508474576271, 'recall': 0.902946273830156, 'f1': 0.8928877463581834, 'number': 577} | {'precision': 0.8711864406779661, 'recall': 0.8908145580589255, 'f1': 0.8808911739502999, 'number': 577} | 0.8771 | 0.8969 | 0.8869 | 0.9670 |
69
+ | 0.0061 | 14.0 | 252 | 0.1552 | {'precision': 0.8779661016949153, 'recall': 0.8977469670710572, 'f1': 0.8877463581833762, 'number': 577} | {'precision': 0.8661016949152542, 'recall': 0.8856152512998267, 'f1': 0.8757497857754927, 'number': 577} | 0.8720 | 0.8917 | 0.8817 | 0.9664 |
70
+ | 0.0054 | 15.0 | 270 | 0.1523 | {'precision': 0.8811544991511036, 'recall': 0.8994800693240901, 'f1': 0.8902229845626072, 'number': 577} | {'precision': 0.8675721561969439, 'recall': 0.8856152512998267, 'f1': 0.8765008576329331, 'number': 577} | 0.8744 | 0.8925 | 0.8834 | 0.9664 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.36.2
76
+ - Pytorch 2.1.0+cu121
77
+ - Datasets 2.16.1
78
+ - Tokenizers 0.15.0
logs/events.out.tfevents.1704797153.854ba1d670db.1167.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:18aee460673d53b2cdcc25b26e1266064189847589f1e4d47830e095e4ed0df5
3
- size 13649
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:728973986ea37fa8d03c554c9b33c81dc3cad6f126c6b04c50516ea1a5d95fd8
3
+ size 14664
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:26dbbc19711c6e4159c54be7f69cc44b3a692690fb1435cf1d1f5998874b8525
3
  size 450542824
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64ddd5f906a698878d32a036a7fc828c2b63f05b84739a1972f2b6788056e321
3
  size 450542824
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": false,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
6
+ "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
+ "resample": 2,
9
+ "size": {
10
+ "height": 224,
11
+ "width": 224
12
+ },
13
+ "tesseract_config": ""
14
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff