utrobinmv commited on
Commit
beca150
1 Parent(s): b57211b

feat update readme

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -53,14 +53,14 @@ widget:
53
  summary brief to ru: 在北京冬奥会自由式滑雪女子坡面障碍技巧决赛中,中国选手谷爱凌夺得银牌。祝贺谷爱凌!今天上午,自由式滑雪女子坡面障碍技巧决赛举行。决赛分三轮进行,取选手最佳成绩排名决出奖牌。第一跳,中国选手谷爱凌获得69.90分。在12位选手中排名第三。完成动作后,谷爱凌又扮了个鬼脸,甚是可爱。第二轮中,谷爱凌在道具区第三个障碍处失误,落地时摔倒。获得16.98分。网友:摔倒了也没关系,继续加油!在第二跳失误摔倒的情况下,谷爱凌顶住压力,第三跳稳稳发挥,流畅落地!获得86.23分!此轮比赛,共12位选手参赛,谷爱凌第10位出场。网友:看比赛时我比谷爱凌紧张,加油!
54
  ---
55
 
56
- # T5 model for text Summary in English, Russian and Chinese language
57
 
58
  This model is designed to perform the task of controlled generation of summary text content in multitasking mode with a built-in translation function for languages: Russian, Chinese, English.
59
 
60
  This is the T5 multitasking model. Which has a conditionally controlled ability to generate summary text content, and translate this. In total, she understands 12 commands, according to the set prefix:
61
- 1) "summary: " - to generate simple concise content
62
- 2) "summary brief: " - to generate a shortened summary content
63
- 3) "summary big: " - to generate elongated summary content
64
 
65
  The model can understand text in any language from the list: Russian, Chinese or English. It can also translate the result into any language from the list: Russian, Chinese or English.
66
 
 
53
  summary brief to ru: 在北京冬奥会自由式滑雪女子坡面障碍技巧决赛中,中国选手谷爱凌夺得银牌。祝贺谷爱凌!今天上午,自由式滑雪女子坡面障碍技巧决赛举行。决赛分三轮进行,取选手最佳成绩排名决出奖牌。第一跳,中国选手谷爱凌获得69.90分。在12位选手中排名第三。完成动作后,谷爱凌又扮了个鬼脸,甚是可爱。第二轮中,谷爱凌在道具区第三个障碍处失误,落地时摔倒。获得16.98分。网友:摔倒了也没关系,继续加油!在第二跳失误摔倒的情况下,谷爱凌顶住压力,第三跳稳稳发挥,流畅落地!获得86.23分!此轮比赛,共12位选手参赛,谷爱凌第10位出场。网友:看比赛时我比谷爱凌紧张,加油!
54
  ---
55
 
56
+ # T5 model for multilingual text Summary in English, Russian and Chinese language
57
 
58
  This model is designed to perform the task of controlled generation of summary text content in multitasking mode with a built-in translation function for languages: Russian, Chinese, English.
59
 
60
  This is the T5 multitasking model. Which has a conditionally controlled ability to generate summary text content, and translate this. In total, she understands 12 commands, according to the set prefix:
61
+ 1) "summary: " - to generate simple concise content in the source language
62
+ 2) "summary brief: " - to generate a shortened summary content in the source language
63
+ 3) "summary big: " - to generate elongated summary content in the source language
64
 
65
  The model can understand text in any language from the list: Russian, Chinese or English. It can also translate the result into any language from the list: Russian, Chinese or English.
66