feat update readme
Browse files
README.md
CHANGED
@@ -53,14 +53,14 @@ widget:
|
|
53 |
summary brief to ru: 在北京冬奥会自由式滑雪女子坡面障碍技巧决赛中,中国选手谷爱凌夺得银牌。祝贺谷爱凌!今天上午,自由式滑雪女子坡面障碍技巧决赛举行。决赛分三轮进行,取选手最佳成绩排名决出奖牌。第一跳,中国选手谷爱凌获得69.90分。在12位选手中排名第三。完成动作后,谷爱凌又扮了个鬼脸,甚是可爱。第二轮中,谷爱凌在道具区第三个障碍处失误,落地时摔倒。获得16.98分。网友:摔倒了也没关系,继续加油!在第二跳失误摔倒的情况下,谷爱凌顶住压力,第三跳稳稳发挥,流畅落地!获得86.23分!此轮比赛,共12位选手参赛,谷爱凌第10位出场。网友:看比赛时我比谷爱凌紧张,加油!
|
54 |
---
|
55 |
|
56 |
-
# T5 model for text Summary in English, Russian and Chinese language
|
57 |
|
58 |
This model is designed to perform the task of controlled generation of summary text content in multitasking mode with a built-in translation function for languages: Russian, Chinese, English.
|
59 |
|
60 |
This is the T5 multitasking model. Which has a conditionally controlled ability to generate summary text content, and translate this. In total, she understands 12 commands, according to the set prefix:
|
61 |
-
1) "summary: " - to generate simple concise content
|
62 |
-
2) "summary brief: " - to generate a shortened summary content
|
63 |
-
3) "summary big: " - to generate elongated summary content
|
64 |
|
65 |
The model can understand text in any language from the list: Russian, Chinese or English. It can also translate the result into any language from the list: Russian, Chinese or English.
|
66 |
|
|
|
53 |
summary brief to ru: 在北京冬奥会自由式滑雪女子坡面障碍技巧决赛中,中国选手谷爱凌夺得银牌。祝贺谷爱凌!今天上午,自由式滑雪女子坡面障碍技巧决赛举行。决赛分三轮进行,取选手最佳成绩排名决出奖牌。第一跳,中国选手谷爱凌获得69.90分。在12位选手中排名第三。完成动作后,谷爱凌又扮了个鬼脸,甚是可爱。第二轮中,谷爱凌在道具区第三个障碍处失误,落地时摔倒。获得16.98分。网友:摔倒了也没关系,继续加油!在第二跳失误摔倒的情况下,谷爱凌顶住压力,第三跳稳稳发挥,流畅落地!获得86.23分!此轮比赛,共12位选手参赛,谷爱凌第10位出场。网友:看比赛时我比谷爱凌紧张,加油!
|
54 |
---
|
55 |
|
56 |
+
# T5 model for multilingual text Summary in English, Russian and Chinese language
|
57 |
|
58 |
This model is designed to perform the task of controlled generation of summary text content in multitasking mode with a built-in translation function for languages: Russian, Chinese, English.
|
59 |
|
60 |
This is the T5 multitasking model. Which has a conditionally controlled ability to generate summary text content, and translate this. In total, she understands 12 commands, according to the set prefix:
|
61 |
+
1) "summary: " - to generate simple concise content in the source language
|
62 |
+
2) "summary brief: " - to generate a shortened summary content in the source language
|
63 |
+
3) "summary big: " - to generate elongated summary content in the source language
|
64 |
|
65 |
The model can understand text in any language from the list: Russian, Chinese or English. It can also translate the result into any language from the list: Russian, Chinese or English.
|
66 |
|