utkusaglm commited on
Commit
ef95a12
1 Parent(s): dde3f05

Upload PPO LunarLander-v1 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 295.94 +/- 13.13
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x12e210280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x12e210310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x12e2103a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x12e210430>", "_build": "<function ActorCriticPolicy._build at 0x12e2104c0>", "forward": "<function ActorCriticPolicy.forward at 0x12e210550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x12e2105e0>", "_predict": "<function ActorCriticPolicy._predict at 0x12e210670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x12e210700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x12e210790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x12e210820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x12e20fcc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 6946816, "_total_timesteps": 6915744, "_num_timesteps_at_start": 6815744, "seed": null, "action_noise": null, "start_time": 1651695518.7732532, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjH0vVXNlcnMvdXRrdXNhZ2xhbS9EZXNrdG9wL3Byb2plY3RzL3JsMS9kZWVwLXJsLWNsYXNzL3VuaXQxL3ZlbnYvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMfS9Vc2Vycy91dGt1c2FnbGFtL0Rlc2t0b3AvcHJvamVjdHMvcmwxL2RlZXAtcmwtY2xhc3MvdW5pdDEvdmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004492936696326444, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVKhuLj7xcUCUhpRSlIwBbJRLuowBdJRHQI/tvfj0cwR1fZQoaAZoCWgPQwi1+uqqgKxxQJSGlFKUaBVLhmgWR0CP7cfYBeXzdX2UKGgGaAloD0MIEJVGzGw3cECUhpRSlGgVS5BoFkdAj+3s+eOGTXV9lChoBmgJaA9DCKQzMPKyV3NAlIaUUpRoFUu1aBZHQI/uQT238XN1fZQoaAZoCWgPQwhfDOVE+79wQJSGlFKUaBVLoWgWR0CP7wH9m6GydX2UKGgGaAloD0MIOPdXj3vsb0CUhpRSlGgVS4NoFkdAj+8cIJJGv3V9lChoBmgJaA9DCBQ/xtw183FAlIaUUpRoFUuGaBZHQI/vioS+QEJ1fZQoaAZoCWgPQwg3GVWGMQNxQJSGlFKUaBVLoWgWR0CP74sUZeiSdX2UKGgGaAloD0MIfGXequsecUCUhpRSlGgVS6xoFkdAj++Rzq8lHHV9lChoBmgJaA9DCM064/viVHFAlIaUUpRoFUuKaBZHQI/wB62OQyR1fZQoaAZoCWgPQwiFJ/T6k+RyQJSGlFKUaBVLq2gWR0CP8BqiXY16dX2UKGgGaAloD0MI/rrTned/cUCUhpRSlGgVS5loFkdAj/A6XKKYRnV9lChoBmgJaA9DCEbsE0AxZnBAlIaUUpRoFUuWaBZHQI/we0VrRBx1fZQoaAZoCWgPQwimRBK9TOBxQJSGlFKUaBVLkGgWR0CP8IyTINmUdX2UKGgGaAloD0MIuOf500bZcECUhpRSlGgVS45oFkdAj/DTIFNcnnV9lChoBmgJaA9DCIgq/Ble1HBAlIaUUpRoFUuNaBZHQI/w2YF7laN1fZQoaAZoCWgPQwhXXYdqSoFzQJSGlFKUaBVLtWgWR0CP8PLeyiVTdX2UKGgGaAloD0MI0a3X9CBscECUhpRSlGgVS6BoFkdAj/F3QUpNK3V9lChoBmgJaA9DCPPLYIyIp3JAlIaUUpRoFUugaBZHQI/x2Yv38Gd1fZQoaAZoCWgPQwgdIQN5ttRxQJSGlFKUaBVLu2gWR0CP8ewztTkydX2UKGgGaAloD0MI+mGE8OjdbkCUhpRSlGgVS5VoFkdAj/MBu4wyqXV9lChoBmgJaA9DCP+Xa9GCLHJAlIaUUpRoFUudaBZHQI/zQa99MK11fZQoaAZoCWgPQwhb6bXZmH1zQJSGlFKUaBVLvGgWR0CP85rsSkCWdX2UKGgGaAloD0MI6+Oh7+4XckCUhpRSlGgVS5RoFkdAj/Q6dMCcPXV9lChoBmgJaA9DCOVC5V8LbHFAlIaUUpRoFUuZaBZHQI/0SpPykKx1fZQoaAZoCWgPQwjpgY/BivZzQJSGlFKUaBVLxWgWR0CP9FkJ8fFKdX2UKGgGaAloD0MI9RQ5RBxEcUCUhpRSlGgVS6loFkdAj/RnVf/m1nV9lChoBmgJaA9DCPX3UnjQP3JAlIaUUpRoFUuyaBZHQI/0aAQQL/l1fZQoaAZoCWgPQwhdbFophLZyQJSGlFKUaBVLvWgWR0CP9Lvd/J/5dX2UKGgGaAloD0MIa4DSUOOqckCUhpRSlGgVS/BoFkdAj/TXpnpSrHV9lChoBmgJaA9DCMuBHmobvnFAlIaUUpRoFUueaBZHQI/07FVDKHR1fZQoaAZoCWgPQwhfCaTE7sZzQJSGlFKUaBVLqmgWR0CP9QuEEkjYdX2UKGgGaAloD0MIlxqhn2nZckCUhpRSlGgVS41oFkdAj/URmTTvzHV9lChoBmgJaA9DCPrQBfUt8XJAlIaUUpRoFUuxaBZHQI/1MGVzIWB1fZQoaAZoCWgPQwgGSgoswDByQJSGlFKUaBVLkGgWR0CP9WTzundgdX2UKGgGaAloD0MImPxP/i4mc0CUhpRSlGgVS6toFkdAj/X9C3PRiXV9lChoBmgJaA9DCJ62RgTjhnBAlIaUUpRoFUukaBZHQI/3BEORT0h1fZQoaAZoCWgPQwiqSfCGtM9uQJSGlFKUaBVLjWgWR0CP91DaXa8IdX2UKGgGaAloD0MI83aE00KpcUCUhpRSlGgVS7loFkdAj/dRf4REnnV9lChoBmgJaA9DCHPVPEfkE3FAlIaUUpRoFUudaBZHQI/3wY+B6KN1fZQoaAZoCWgPQwjYf52bdu5xQJSGlFKUaBVLmWgWR0CP98LCvX9SdX2UKGgGaAloD0MID3uhgO1wcECUhpRSlGgVS6BoFkdAj/fs3qAz6HV9lChoBmgJaA9DCCp0XmPXhXFAlIaUUpRoFUvCaBZHQI/4CnFYMfB1fZQoaAZoCWgPQwjDRlm/mbhvQJSGlFKUaBVLkWgWR0CP+Buy/sVtdX2UKGgGaAloD0MIpABRMCNzc0CUhpRSlGgVS7NoFkdAj/hLPdEb53V9lChoBmgJaA9DCOgWuhLBxHFAlIaUUpRoFUuoaBZHQI/4Zc/t6X11fZQoaAZoCWgPQwiZoIZv4QFzQJSGlFKUaBVLoGgWR0CP+LMB6rvLdX2UKGgGaAloD0MIl/+QfjtvckCUhpRSlGgVS6poFkdAj/i9L6DXe3V9lChoBmgJaA9DCCe+2lGcF3JAlIaUUpRoFUu1aBZHQI/4wskIHC51fZQoaAZoCWgPQwgSaRt/4mNxQJSGlFKUaBVLsGgWR0CP+T1tfoicdX2UKGgGaAloD0MIA3rhzkXCckCUhpRSlGgVS55oFkdAj/l9HDrJKnV9lChoBmgJaA9DCLCsNClFdnJAlIaUUpRoFUuUaBZHQI/6Rl4C6pZ1fZQoaAZoCWgPQwh7L75oj6txQJSGlFKUaBVLmmgWR0CP+r2oNutPdX2UKGgGaAloD0MIlx5N9eQ8cUCUhpRSlGgVS4JoFkdAj/rEtNBWxXV9lChoBmgJaA9DCNVd2QWDwm9AlIaUUpRoFUudaBZHQI/60cbR4Ql1fZQoaAZoCWgPQwhQHEC/75txQJSGlFKUaBVLm2gWR0CP+zqLS/j9dX2UKGgGaAloD0MIUDdQ4J0Pc0CUhpRSlGgVS41oFkdAj/t7xNIsiHV9lChoBmgJaA9DCKHWNO+4hHJAlIaUUpRoFUuLaBZHQI/7kQumJnB1fZQoaAZoCWgPQwgiUWhZd01yQJSGlFKUaBVLu2gWR0CP/Gnpjc2zdX2UKGgGaAloD0MIidS0i+nScUCUhpRSlGgVS7loFkdAj/xyHdoFmnV9lChoBmgJaA9DCJS+EHKevXFAlIaUUpRoFUulaBZHQI/8w/A0sOJ1fZQoaAZoCWgPQwi+Sj52lzxvQJSGlFKUaBVLj2gWR0CP/N+CK77LdX2UKGgGaAloD0MII6RuZx/KckCUhpRSlGgVS+hoFkdAj/1a/7BO6HV9lChoBmgJaA9DCIVE2sbfiHNAlIaUUpRoFUu9aBZHQI/9YtpVS4x1fZQoaAZoCWgPQwhYcD/gAYhwQJSGlFKUaBVLlWgWR0CP/WRTS9dvdX2UKGgGaAloD0MIx4FXyx1DdECUhpRSlGgVS8ZoFkdAj/2yzHCGe3V9lChoBmgJaA9DCB2Txf0HtXJAlIaUUpRoFUuCaBZHQI/9xk/bCaZ1fZQoaAZoCWgPQwgJT+j1p4ZwQJSGlFKUaBVLlGgWR0CP/tePaL4vdX2UKGgGaAloD0MInPwWnSwDcECUhpRSlGgVS6FoFkdAj/8k2Hck+3V9lChoBmgJaA9DCPrS259LuHJAlIaUUpRoFUuQaBZHQI//NFc6eXl1fZQoaAZoCWgPQwjSxaaVQr1xQJSGlFKUaBVLp2gWR0CP/1g/keZHdX2UKGgGaAloD0MITtTS3EpRcUCUhpRSlGgVS5toFkdAj//lPrOZ9nV9lChoBmgJaA9DCCi5wyayHXNAlIaUUpRoFUufaBZHQI//67sfJV91fZQoaAZoCWgPQwj0iqceqeNyQJSGlFKUaBVLjWgWR0CQAGoQFs55dX2UKGgGaAloD0MIejcWFIY5c0CUhpRSlGgVS5VoFkdAkAB7iIcin3V9lChoBmgJaA9DCGFsIciBVnFAlIaUUpRoFUuHaBZHQJAAm0AtFrl1fZQoaAZoCWgPQwiponiV9ctxQJSGlFKUaBVLq2gWR0CQAKeKKpDNdX2UKGgGaAloD0MI4UOJlvxNc0CUhpRSlGgVS7loFkdAkADXX2/SIHV9lChoBmgJaA9DCPXXKyw4hXJAlIaUUpRoFUuwaBZHQJABMURFqi51fZQoaAZoCWgPQwifIRyzbBlxQJSGlFKUaBVLomgWR0CQATU0elsQdX2UKGgGaAloD0MImUUotoKackCUhpRSlGgVS7toFkdAkAFUNvwVkHV9lChoBmgJaA9DCP4LBAFygnJAlIaUUpRoFUt+aBZHQJABYmShakh1fZQoaAZoCWgPQwio5JzYQ49zQJSGlFKUaBVLxGgWR0CQAaLAHmihdX2UKGgGaAloD0MI205bI8IbckCUhpRSlGgVS5xoFkdAkAHVz+3pfXV9lChoBmgJaA9DCOyFAraDbXJAlIaUUpRoFUu+aBZHQJACKfChvit1fZQoaAZoCWgPQwjfqBWmb3hyQJSGlFKUaBVLsGgWR0CQAjVGTcIrdX2UKGgGaAloD0MI7Q+U27bIcUCUhpRSlGgVS6doFkdAkAJcBIWgvnV9lChoBmgJaA9DCJIDdjU5F3NAlIaUUpRoFUusaBZHQJACa0lZ5iV1fZQoaAZoCWgPQwh5QNmUK8txQJSGlFKUaBVLimgWR0CQApG3F1jidX2UKGgGaAloD0MIjKGcaFeGcUCUhpRSlGgVS6RoFkdAkALSfcvdunV9lChoBmgJaA9DCJVHN8IixXJAlIaUUpRoFUuhaBZHQJAC7xx1gYx1fZQoaAZoCWgPQwhjQWFQ5udxQJSGlFKUaBVLgGgWR0CQAwEFnqVydX2UKGgGaAloD0MIL4oe+NjocUCUhpRSlGgVS6VoFkdAkAMpobn5i3V9lChoBmgJaA9DCNFBl3DoAHRAlIaUUpRoFUvEaBZHQJADM0sOG0x1fZQoaAZoCWgPQwiTGARWjuxxQJSGlFKUaBVLnGgWR0CQA1/axoqTdX2UKGgGaAloD0MIg94bQ0D4cUCUhpRSlGgVS6BoFkdAkAOJpi7TUnV9lChoBmgJaA9DCOxP4nMnSnNAlIaUUpRoFUu3aBZHQJAD53cHnlp1fZQoaAZoCWgPQwgKgPEMWrtwQJSGlFKUaBVLo2gWR0CQBBaVD8cddX2UKGgGaAloD0MIX9ODglLwbkCUhpRSlGgVS45oFkdAkAQk2kzoEHV9lChoBmgJaA9DCL1zKEPVWnJAlIaUUpRoFUvCaBZHQJAEVO+IuXh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2120, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjH0vVXNlcnMvdXRrdXNhZ2xhbS9EZXNrdG9wL3Byb2plY3RzL3JsMS9kZWVwLXJsLWNsYXNzL3VuaXQxL3ZlbnYvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMfS9Vc2Vycy91dGt1c2FnbGFtL0Rlc2t0b3AvcHJvamVjdHMvcmwxL2RlZXAtcmwtY2xhc3MvdW5pdDEvdmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-12.3.1-arm64-arm-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000", "Python": "3.9.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.22.3", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af623286b8bf47590518bbfb22208b1381d409f3e3497a7a956d54974de58bcf
3
+ size 142974
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x12e210280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x12e210310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x12e2103a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x12e210430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x12e2104c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x12e210550>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x12e2105e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x12e210670>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x12e210700>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x12e210790>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x12e210820>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x12e20fcc0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 6946816,
46
+ "_total_timesteps": 6915744,
47
+ "_num_timesteps_at_start": 6815744,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651695518.7732532,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjH0vVXNlcnMvdXRrdXNhZ2xhbS9EZXNrdG9wL3Byb2plY3RzL3JsMS9kZWVwLXJsLWNsYXNzL3VuaXQxL3ZlbnYvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMfS9Vc2Vycy91dGt1c2FnbGFtL0Rlc2t0b3AvcHJvamVjdHMvcmwxL2RlZXAtcmwtY2xhc3MvdW5pdDEvdmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_original_obs": null,
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.004492936696326444,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVKhuLj7xcUCUhpRSlIwBbJRLuowBdJRHQI/tvfj0cwR1fZQoaAZoCWgPQwi1+uqqgKxxQJSGlFKUaBVLhmgWR0CP7cfYBeXzdX2UKGgGaAloD0MIEJVGzGw3cECUhpRSlGgVS5BoFkdAj+3s+eOGTXV9lChoBmgJaA9DCKQzMPKyV3NAlIaUUpRoFUu1aBZHQI/uQT238XN1fZQoaAZoCWgPQwhfDOVE+79wQJSGlFKUaBVLoWgWR0CP7wH9m6GydX2UKGgGaAloD0MIOPdXj3vsb0CUhpRSlGgVS4NoFkdAj+8cIJJGv3V9lChoBmgJaA9DCBQ/xtw183FAlIaUUpRoFUuGaBZHQI/vioS+QEJ1fZQoaAZoCWgPQwg3GVWGMQNxQJSGlFKUaBVLoWgWR0CP74sUZeiSdX2UKGgGaAloD0MIfGXequsecUCUhpRSlGgVS6xoFkdAj++Rzq8lHHV9lChoBmgJaA9DCM064/viVHFAlIaUUpRoFUuKaBZHQI/wB62OQyR1fZQoaAZoCWgPQwiFJ/T6k+RyQJSGlFKUaBVLq2gWR0CP8BqiXY16dX2UKGgGaAloD0MI/rrTned/cUCUhpRSlGgVS5loFkdAj/A6XKKYRnV9lChoBmgJaA9DCEbsE0AxZnBAlIaUUpRoFUuWaBZHQI/we0VrRBx1fZQoaAZoCWgPQwimRBK9TOBxQJSGlFKUaBVLkGgWR0CP8IyTINmUdX2UKGgGaAloD0MIuOf500bZcECUhpRSlGgVS45oFkdAj/DTIFNcnnV9lChoBmgJaA9DCIgq/Ble1HBAlIaUUpRoFUuNaBZHQI/w2YF7laN1fZQoaAZoCWgPQwhXXYdqSoFzQJSGlFKUaBVLtWgWR0CP8PLeyiVTdX2UKGgGaAloD0MI0a3X9CBscECUhpRSlGgVS6BoFkdAj/F3QUpNK3V9lChoBmgJaA9DCPPLYIyIp3JAlIaUUpRoFUugaBZHQI/x2Yv38Gd1fZQoaAZoCWgPQwgdIQN5ttRxQJSGlFKUaBVLu2gWR0CP8ewztTkydX2UKGgGaAloD0MI+mGE8OjdbkCUhpRSlGgVS5VoFkdAj/MBu4wyqXV9lChoBmgJaA9DCP+Xa9GCLHJAlIaUUpRoFUudaBZHQI/zQa99MK11fZQoaAZoCWgPQwhb6bXZmH1zQJSGlFKUaBVLvGgWR0CP85rsSkCWdX2UKGgGaAloD0MI6+Oh7+4XckCUhpRSlGgVS5RoFkdAj/Q6dMCcPXV9lChoBmgJaA9DCOVC5V8LbHFAlIaUUpRoFUuZaBZHQI/0SpPykKx1fZQoaAZoCWgPQwjpgY/BivZzQJSGlFKUaBVLxWgWR0CP9FkJ8fFKdX2UKGgGaAloD0MI9RQ5RBxEcUCUhpRSlGgVS6loFkdAj/RnVf/m1nV9lChoBmgJaA9DCPX3UnjQP3JAlIaUUpRoFUuyaBZHQI/0aAQQL/l1fZQoaAZoCWgPQwhdbFophLZyQJSGlFKUaBVLvWgWR0CP9Lvd/J/5dX2UKGgGaAloD0MIa4DSUOOqckCUhpRSlGgVS/BoFkdAj/TXpnpSrHV9lChoBmgJaA9DCMuBHmobvnFAlIaUUpRoFUueaBZHQI/07FVDKHR1fZQoaAZoCWgPQwhfCaTE7sZzQJSGlFKUaBVLqmgWR0CP9QuEEkjYdX2UKGgGaAloD0MIlxqhn2nZckCUhpRSlGgVS41oFkdAj/URmTTvzHV9lChoBmgJaA9DCPrQBfUt8XJAlIaUUpRoFUuxaBZHQI/1MGVzIWB1fZQoaAZoCWgPQwgGSgoswDByQJSGlFKUaBVLkGgWR0CP9WTzundgdX2UKGgGaAloD0MImPxP/i4mc0CUhpRSlGgVS6toFkdAj/X9C3PRiXV9lChoBmgJaA9DCJ62RgTjhnBAlIaUUpRoFUukaBZHQI/3BEORT0h1fZQoaAZoCWgPQwiqSfCGtM9uQJSGlFKUaBVLjWgWR0CP91DaXa8IdX2UKGgGaAloD0MI83aE00KpcUCUhpRSlGgVS7loFkdAj/dRf4REnnV9lChoBmgJaA9DCHPVPEfkE3FAlIaUUpRoFUudaBZHQI/3wY+B6KN1fZQoaAZoCWgPQwjYf52bdu5xQJSGlFKUaBVLmWgWR0CP98LCvX9SdX2UKGgGaAloD0MID3uhgO1wcECUhpRSlGgVS6BoFkdAj/fs3qAz6HV9lChoBmgJaA9DCCp0XmPXhXFAlIaUUpRoFUvCaBZHQI/4CnFYMfB1fZQoaAZoCWgPQwjDRlm/mbhvQJSGlFKUaBVLkWgWR0CP+Buy/sVtdX2UKGgGaAloD0MIpABRMCNzc0CUhpRSlGgVS7NoFkdAj/hLPdEb53V9lChoBmgJaA9DCOgWuhLBxHFAlIaUUpRoFUuoaBZHQI/4Zc/t6X11fZQoaAZoCWgPQwiZoIZv4QFzQJSGlFKUaBVLoGgWR0CP+LMB6rvLdX2UKGgGaAloD0MIl/+QfjtvckCUhpRSlGgVS6poFkdAj/i9L6DXe3V9lChoBmgJaA9DCCe+2lGcF3JAlIaUUpRoFUu1aBZHQI/4wskIHC51fZQoaAZoCWgPQwgSaRt/4mNxQJSGlFKUaBVLsGgWR0CP+T1tfoicdX2UKGgGaAloD0MIA3rhzkXCckCUhpRSlGgVS55oFkdAj/l9HDrJKnV9lChoBmgJaA9DCLCsNClFdnJAlIaUUpRoFUuUaBZHQI/6Rl4C6pZ1fZQoaAZoCWgPQwh7L75oj6txQJSGlFKUaBVLmmgWR0CP+r2oNutPdX2UKGgGaAloD0MIlx5N9eQ8cUCUhpRSlGgVS4JoFkdAj/rEtNBWxXV9lChoBmgJaA9DCNVd2QWDwm9AlIaUUpRoFUudaBZHQI/60cbR4Ql1fZQoaAZoCWgPQwhQHEC/75txQJSGlFKUaBVLm2gWR0CP+zqLS/j9dX2UKGgGaAloD0MIUDdQ4J0Pc0CUhpRSlGgVS41oFkdAj/t7xNIsiHV9lChoBmgJaA9DCKHWNO+4hHJAlIaUUpRoFUuLaBZHQI/7kQumJnB1fZQoaAZoCWgPQwgiUWhZd01yQJSGlFKUaBVLu2gWR0CP/Gnpjc2zdX2UKGgGaAloD0MIidS0i+nScUCUhpRSlGgVS7loFkdAj/xyHdoFmnV9lChoBmgJaA9DCJS+EHKevXFAlIaUUpRoFUulaBZHQI/8w/A0sOJ1fZQoaAZoCWgPQwi+Sj52lzxvQJSGlFKUaBVLj2gWR0CP/N+CK77LdX2UKGgGaAloD0MII6RuZx/KckCUhpRSlGgVS+hoFkdAj/1a/7BO6HV9lChoBmgJaA9DCIVE2sbfiHNAlIaUUpRoFUu9aBZHQI/9YtpVS4x1fZQoaAZoCWgPQwhYcD/gAYhwQJSGlFKUaBVLlWgWR0CP/WRTS9dvdX2UKGgGaAloD0MIx4FXyx1DdECUhpRSlGgVS8ZoFkdAj/2yzHCGe3V9lChoBmgJaA9DCB2Txf0HtXJAlIaUUpRoFUuCaBZHQI/9xk/bCaZ1fZQoaAZoCWgPQwgJT+j1p4ZwQJSGlFKUaBVLlGgWR0CP/tePaL4vdX2UKGgGaAloD0MInPwWnSwDcECUhpRSlGgVS6FoFkdAj/8k2Hck+3V9lChoBmgJaA9DCPrS259LuHJAlIaUUpRoFUuQaBZHQI//NFc6eXl1fZQoaAZoCWgPQwjSxaaVQr1xQJSGlFKUaBVLp2gWR0CP/1g/keZHdX2UKGgGaAloD0MITtTS3EpRcUCUhpRSlGgVS5toFkdAj//lPrOZ9nV9lChoBmgJaA9DCCi5wyayHXNAlIaUUpRoFUufaBZHQI//67sfJV91fZQoaAZoCWgPQwj0iqceqeNyQJSGlFKUaBVLjWgWR0CQAGoQFs55dX2UKGgGaAloD0MIejcWFIY5c0CUhpRSlGgVS5VoFkdAkAB7iIcin3V9lChoBmgJaA9DCGFsIciBVnFAlIaUUpRoFUuHaBZHQJAAm0AtFrl1fZQoaAZoCWgPQwiponiV9ctxQJSGlFKUaBVLq2gWR0CQAKeKKpDNdX2UKGgGaAloD0MI4UOJlvxNc0CUhpRSlGgVS7loFkdAkADXX2/SIHV9lChoBmgJaA9DCPXXKyw4hXJAlIaUUpRoFUuwaBZHQJABMURFqi51fZQoaAZoCWgPQwifIRyzbBlxQJSGlFKUaBVLomgWR0CQATU0elsQdX2UKGgGaAloD0MImUUotoKackCUhpRSlGgVS7toFkdAkAFUNvwVkHV9lChoBmgJaA9DCP4LBAFygnJAlIaUUpRoFUt+aBZHQJABYmShakh1fZQoaAZoCWgPQwio5JzYQ49zQJSGlFKUaBVLxGgWR0CQAaLAHmihdX2UKGgGaAloD0MI205bI8IbckCUhpRSlGgVS5xoFkdAkAHVz+3pfXV9lChoBmgJaA9DCOyFAraDbXJAlIaUUpRoFUu+aBZHQJACKfChvit1fZQoaAZoCWgPQwjfqBWmb3hyQJSGlFKUaBVLsGgWR0CQAjVGTcIrdX2UKGgGaAloD0MI7Q+U27bIcUCUhpRSlGgVS6doFkdAkAJcBIWgvnV9lChoBmgJaA9DCJIDdjU5F3NAlIaUUpRoFUusaBZHQJACa0lZ5iV1fZQoaAZoCWgPQwh5QNmUK8txQJSGlFKUaBVLimgWR0CQApG3F1jidX2UKGgGaAloD0MIjKGcaFeGcUCUhpRSlGgVS6RoFkdAkALSfcvdunV9lChoBmgJaA9DCJVHN8IixXJAlIaUUpRoFUuhaBZHQJAC7xx1gYx1fZQoaAZoCWgPQwhjQWFQ5udxQJSGlFKUaBVLgGgWR0CQAwEFnqVydX2UKGgGaAloD0MIL4oe+NjocUCUhpRSlGgVS6VoFkdAkAMpobn5i3V9lChoBmgJaA9DCNFBl3DoAHRAlIaUUpRoFUvEaBZHQJADM0sOG0x1fZQoaAZoCWgPQwiTGARWjuxxQJSGlFKUaBVLnGgWR0CQA1/axoqTdX2UKGgGaAloD0MIg94bQ0D4cUCUhpRSlGgVS6BoFkdAkAOJpi7TUnV9lChoBmgJaA9DCOxP4nMnSnNAlIaUUpRoFUu3aBZHQJAD53cHnlp1fZQoaAZoCWgPQwgKgPEMWrtwQJSGlFKUaBVLo2gWR0CQBBaVD8cddX2UKGgGaAloD0MIX9ODglLwbkCUhpRSlGgVS45oFkdAkAQk2kzoEHV9lChoBmgJaA9DCL1zKEPVWnJAlIaUUpRoFUvCaBZHQJAEVO+IuXh1ZS4="
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 2120,
76
+ "n_steps": 2048,
77
+ "gamma": 0.99,
78
+ "gae_lambda": 0.95,
79
+ "ent_coef": 0.0,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 64,
83
+ "n_epochs": 10,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjH0vVXNlcnMvdXRrdXNhZ2xhbS9EZXNrdG9wL3Byb2plY3RzL3JsMS9kZWVwLXJsLWNsYXNzL3VuaXQxL3ZlbnYvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMfS9Vc2Vycy91dGt1c2FnbGFtL0Rlc2t0b3AvcHJvamVjdHMvcmwxL2RlZXAtcmwtY2xhc3MvdW5pdDEvdmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null
91
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8b0d41875082e158d36085ae577d3848626468a4810fe3c18ed981e1c258925
3
+ size 84637
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31bf08b7bf4e9caceb14d86701e4473cd96f8a846ed5150bff89f390acbf2215
3
+ size 43073
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: macOS-12.3.1-arm64-arm-64bit Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000
2
+ Python: 3.9.10
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: False
6
+ Numpy: 1.22.3
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16b78a8689ebc44e608bba48a864e9c815bd721bb947c44092a9b74a0aa7d185
3
+ size 369184
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 295.9390457193761, "std_reward": 13.129464372715917, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T23:22:59.693043"}