|
import trimesh |
|
import numpy as np |
|
from copy import deepcopy |
|
from PIL import Image |
|
|
|
from . import color_mappings |
|
|
|
def line(p1, p2, c=(255,0,0), resolution=10, radius=0.05): |
|
'''draws a 3d cylinder along the line (p1, p2)''' |
|
|
|
if len(c) == 1: |
|
c = [c[0]]*4 |
|
elif len(c) == 3: |
|
c = [*c, 255] |
|
elif len(c) != 4: |
|
raise ValueError(f'{c} is not a valid color (must have 1,3, or 4 elements).') |
|
|
|
|
|
p1, p2 = np.asarray(p1), np.asarray(p2) |
|
l = np.linalg.norm(p2-p1) |
|
|
|
direction = (p2 - p1) / l |
|
|
|
|
|
T = np.eye(4) |
|
T[:3, 2] = direction |
|
T[:3, 3] = (p1+p2)/2 |
|
|
|
|
|
b0, b1 = T[:3, 0], T[:3, 1] |
|
if np.abs(np.dot(b0, direction)) < np.abs(np.dot(b1, direction)): |
|
T[:3, 1] = -np.cross(b0, direction) |
|
else: |
|
T[:3, 0] = np.cross(b1, direction) |
|
|
|
|
|
mesh = trimesh.primitives.Cylinder(radius=radius, height=l, transform=T) |
|
|
|
|
|
mesh.visual.vertex_colors = np.ones_like(mesh.visual.vertex_colors)*c |
|
|
|
return mesh |
|
|
|
def show_wf(row, radius=10): |
|
EDGE_CLASSES = ['eave', |
|
'ridge', |
|
'step_flashing', |
|
'rake', |
|
'flashing', |
|
'post', |
|
'valley', |
|
'hip', |
|
'transition_line'] |
|
if 'edge_semantics' not in row: |
|
print ("Warning: edge semantics is not here, skipping") |
|
return [line(a,b, radius=radius, c=(214, 251, 248)) for a,b in np.stack([*row['wf_vertices']])[np.stack(row['wf_edges'])]] |
|
elif len(np.stack(row['wf_edges'])) == len(row['edge_semantics']): |
|
return [line(a,b, radius=radius, c=color_mappings.gestalt_color_mapping[EDGE_CLASSES[cls_id]]) for (a,b), cls_id in zip(np.stack([*row['wf_vertices']])[np.stack(row['wf_edges'])], row['edge_semantics'])] |
|
else: |
|
print ("Warning: edge semantics has different length compared to edges, skipping semantics") |
|
return [line(a,b, radius=radius, c=(214, 251, 248)) for a,b in np.stack([*row['wf_vertices']])[np.stack(row['wf_edges'])]] |
|
|
|
|
|
|
|
def show_grid(edges, meshes=None, row_length=5): |
|
''' |
|
edges: list of list of meshes |
|
meshes: optional corresponding list of meshes |
|
row_length: number of meshes per row |
|
|
|
returns trimesh.Scene() |
|
''' |
|
|
|
T = np.eye(4) |
|
out = [] |
|
edges = [sum(e[1:], e[0]) for e in edges] |
|
row_height = 1.1 * max((e.extents for e in edges), key=lambda e: e[1])[1] |
|
col_width = 1.1 * max((e.extents for e in edges), key=lambda e: e[0])[0] |
|
|
|
|
|
if meshes is None: |
|
meshes = [None]*len(edges) |
|
|
|
for i, (gt, mesh) in enumerate(zip(edges, meshes), start=0): |
|
mesh = deepcopy(mesh) |
|
gt = deepcopy(gt) |
|
|
|
if i%row_length != 0: |
|
T[0, 3] += col_width |
|
|
|
else: |
|
T[0, 3] = 0 |
|
T[1, 3] += row_height |
|
|
|
|
|
|
|
if mesh is not None: |
|
mesh.apply_transform(T) |
|
out.append(mesh) |
|
|
|
gt.apply_transform(T) |
|
out.append(gt) |
|
|
|
|
|
out.extend([mesh, gt]) |
|
|
|
|
|
return trimesh.Scene(out) |
|
|
|
|
|
|
|
|
|
def visualize_order_images(row_order): |
|
return create_image_grid(row_order['ade20k'] + row_order['gestalt'] + [visualize_depth(dm) for dm in row_order['depthcm']], num_per_row=len(row_order['ade20k'])) |
|
|
|
def create_image_grid(images, target_length=312, num_per_row=2): |
|
|
|
first_img = images[0] |
|
aspect_ratio = first_img.width / first_img.height |
|
new_width = int((target_length ** 2 * aspect_ratio) ** 0.5) |
|
new_height = int((target_length ** 2 / aspect_ratio) ** 0.5) |
|
|
|
|
|
resized_images = [img.resize((new_width, new_height), Image.Resampling.LANCZOS) for img in images] |
|
|
|
|
|
num_rows = (len(resized_images) + num_per_row - 1) // num_per_row |
|
grid_width = new_width * num_per_row |
|
grid_height = new_height * num_rows |
|
|
|
|
|
grid_img = Image.new('RGB', (grid_width, grid_height)) |
|
|
|
|
|
for i, img in enumerate(resized_images): |
|
x_offset = (i % num_per_row) * new_width |
|
y_offset = (i // num_per_row) * new_height |
|
grid_img.paste(img, (x_offset, y_offset)) |
|
|
|
return grid_img |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
|
|
def visualize_depth(depth, min_depth=None, max_depth=None, cmap='rainbow'): |
|
depth = np.array(depth) |
|
|
|
if min_depth is None: |
|
min_depth = np.min(depth) |
|
if max_depth is None: |
|
max_depth = np.max(depth) |
|
|
|
|
|
|
|
depth = (depth - min_depth) / (max_depth - min_depth) |
|
depth = np.clip(depth, 0, 1) |
|
|
|
|
|
cmap = plt.get_cmap(cmap) |
|
depth_image = (cmap(depth) * 255).astype(np.uint8) |
|
|
|
|
|
depth_image = Image.fromarray(depth_image) |
|
|
|
return depth_image |