tools / hoho /hoho.py
jacklangerman's picture
add more vis
724cc25
raw
history blame
10.2 kB
import os
import json
import shutil
from pathlib import Path
from typing import Dict
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
LOCAL_DATADIR = None
def setup(local_dir='./data/usm-training-data/data'):
# If we are in the test environment, we need to link the data directory to the correct location
tmp_datadir = Path('/tmp/data/data')
local_test_datadir = Path('./data/usm-test-data-x/data')
local_val_datadir = Path(local_dir)
os.system('pwd')
os.system('ls -lahtr .')
if tmp_datadir.exists() and not local_test_datadir.exists():
global LOCAL_DATADIR
LOCAL_DATADIR = local_test_datadir
# shutil.move(datadir, './usm-test-data-x/data')
print(f"Linking {tmp_datadir} to {LOCAL_DATADIR} (we are in the test environment)")
LOCAL_DATADIR.parent.mkdir(parents=True, exist_ok=True)
LOCAL_DATADIR.symlink_to(tmp_datadir)
else:
LOCAL_DATADIR = local_val_datadir
print(f"Using {LOCAL_DATADIR} as the data directory (we are running locally)")
# os.system("ls -lahtr")
# os.system(f"ls -lahtr {LOCAL_DATADIR}")
assert LOCAL_DATADIR.exists(), f"Data directory {LOCAL_DATADIR} does not exist"
return LOCAL_DATADIR
import importlib
from pathlib import Path
import subprocess
def download_package(package_name, path_to_save='packages'):
"""
Downloads a package using pip and saves it to a specified directory.
Parameters:
package_name (str): The name of the package to download.
path_to_save (str): The path to the directory where the package will be saved.
"""
try:
# pip download webdataset -d packages/webdataset --platform manylinux1_x86_64 --python-version 38 --only-binary=:all:
subprocess.check_call([subprocess.sys.executable, "-m", "pip", "download", package_name,
"-d", str(Path(path_to_save)/package_name), # Download the package to the specified directory
"--platform", "manylinux1_x86_64", # Specify the platform
"--python-version", "38", # Specify the Python version
"--only-binary=:all:"]) # Download only binary packages
print(f'Package "{package_name}" downloaded successfully')
except subprocess.CalledProcessError as e:
print(f'Failed to downloaded package "{package_name}". Error: {e}')
def install_package_from_local_file(package_name, folder='packages'):
"""
Installs a package from a local .whl file or a directory containing .whl files using pip.
Parameters:
path_to_file_or_directory (str): The path to the .whl file or the directory containing .whl files.
"""
try:
pth = str(Path(folder) / package_name)
subprocess.check_call([subprocess.sys.executable, "-m", "pip", "install",
"--no-index", # Do not use package index
"--find-links", pth, # Look for packages in the specified directory or at the file
package_name]) # Specify the package to install
print(f"Package installed successfully from {pth}")
except subprocess.CalledProcessError as e:
print(f"Failed to install package from {pth}. Error: {e}")
def importt(module_name, as_name=None):
"""
Imports a module and returns it.
Parameters:
module_name (str): The name of the module to import.
as_name (str): The name to use for the imported module. If None, the original module name will be used.
Returns:
The imported module.
"""
for _ in range(2):
try:
if as_name is None:
print(f'imported {module_name}')
return importlib.import_module(module_name)
else:
print(f'imported {module_name} as {as_name}')
return importlib.import_module(module_name, as_name)
except ModuleNotFoundError as e:
install_package_from_local_file(module_name)
print(f"Failed to import module {module_name}. Error: {e}")
def prepare_submission():
# Download packages from requirements.txt
if Path('requirements.txt').exists():
print('downloading packages from requirements.txt')
Path('packages').mkdir(exist_ok=True)
with open('requirements.txt') as f:
packages = f.readlines()
for p in packages:
download_package(p.strip())
print('all packages downloaded. Don\'t foget to include the packages in the submission by adding them with git lfs.')
def Rt_to_eye_target(im, K, R, t):
height = im.height
focal_length = K[0,0]
fov = 2.0 * np.arctan2((0.5 * height), focal_length) / (np.pi / 180.0)
x_axis, y_axis, z_axis = R
eye = -(R.T @ t).squeeze()
z_axis = z_axis.squeeze()
target = eye + z_axis
up = -y_axis
return eye, target, up, fov
########## general utilities ##########
import contextlib
import tempfile
from pathlib import Path
@contextlib.contextmanager
def working_directory(path):
"""Changes working directory and returns to previous on exit."""
prev_cwd = Path.cwd()
os.chdir(path)
try:
yield
finally:
os.chdir(prev_cwd)
@contextlib.contextmanager
def temp_working_directory():
with tempfile.TemporaryDirectory(dir='.') as D:
with working_directory(D):
yield
############# Dataset #############
def proc(row, split='train'):
out = {}
for k, v in row.items():
colname = k.split('.')[0]
if colname in {'ade20k', 'depthcm', 'gestalt'}:
if colname in out:
out[colname].append(v)
else:
out[colname] = [v]
elif colname in {'wireframe', 'mesh'}:
# out.update({a: b.tolist() for a,b in v.items()})
out.update({a: b for a,b in v.items()})
elif colname in 'kr':
out[colname.upper()] = v
else:
out[colname] = v
return Sample(out)
from . import read_write_colmap
def decode_colmap(s):
# with open('colmap_solve/points3D.bin', 'wb') as stream:
with temp_working_directory():
with open('points3D.bin', 'wb') as stream:
stream.write(s['points3d'])
with open('cameras.bin', 'wb') as stream:
stream.write(s['cameras'])
with open('images.bin', 'wb') as stream:
stream.write(s['images'])
cameras, images, points3D = read_write_colmap.read_model(
path='.', ext='.bin'
)
return cameras, images, points3D
from PIL import Image
import io
def decode(row):
cameras, images, points3D = decode_colmap(row)
out = {}
for k, v in row.items():
# colname = k.split('.')[0]
if k in {'ade20k', 'depthcm', 'gestalt'}:
# print(k, len(v), type(v))
v = [Image.open(io.BytesIO(im)) for im in v]
if k in out:
out[k].extend(v)
else:
out[k] = v
elif k in {'wireframe', 'mesh'}:
# out.update({a: b.tolist() for a,b in v.items()})
v = dict(np.load(io.BytesIO(v)))
out.update({a: b for a,b in v.items()})
elif k in 'kr':
out[k.upper()] = v
elif k == 'cameras':
out[k] = cameras
elif k == 'images':
out[k] = images
elif k =='points3d':
out[k] = points3D
else:
out[k] = v
return Sample(out)
class Sample(Dict):
def __repr__(self):
return str({k: v.shape if hasattr(v, 'shape') else [type(v[0])] if isinstance(v, list) else type(v) for k,v in self.items()})
def get_params():
exmaple_param_dict = {
"competition_id": "usm3d/S23DR",
"competition_type": "script",
"metric": "custom",
"token": "hf_**********************************",
"team_id": "local-test-team_id",
"submission_id": "local-test-submission_id",
"submission_id_col": "__key__",
"submission_cols": [
"__key__",
"wf_edges",
"wf_vertices",
"edge_semantics"
],
"submission_rows": 180,
"output_path": ".",
"submission_repo": "<THE HF MODEL ID of THIS REPO",
"time_limit": 7200,
"dataset": "usm3d/usm-test-data-x",
"submission_filenames": [
"submission.parquet"
]
}
param_path = Path('params.json')
if not param_path.exists():
print('params.json not found (this means we probably aren\'t in the test env). Using example params.')
params = exmaple_param_dict
else:
print('found params.json (this means we are probably in the test env). Using params from file.')
with param_path.open() as f:
params = json.load(f)
print(params)
return params
import webdataset as wds
import numpy as np
def get_dataset(decode='pil', proc=proc, split='train', dataset_type='webdataset'):
if LOCAL_DATADIR is None:
raise ValueError('LOCAL_DATADIR is not set. Please run setup() first.')
local_dir = Path(LOCAL_DATADIR)
if split != 'all':
local_dir = local_dir / split
paths = [str(p) for p in local_dir.rglob('*.tar.gz')]
dataset = wds.WebDataset(paths)
if decode is not None:
dataset = dataset.decode(decode)
else:
dataset = dataset.decode()
dataset = dataset.map(proc)
if dataset_type == 'webdataset':
return dataset
if dataset_type == 'hf':
import datasets
from datasets import Features, Value, Sequence, Image, Array2D
if split == 'train':
return datasets.IterableDataset.from_generator(lambda: dataset.iterator())
elif split == 'val':
return datasets.IterableDataset.from_generator(lambda: dataset.iterator())