dmytromishkin commited on
Commit
b4bc845
·
1 Parent(s): ac0c4b0

Added minimal empty solution

Browse files
Files changed (3) hide show
  1. README.md +16 -0
  2. hoho.py +247 -0
  3. script.py +39 -0
README.md CHANGED
@@ -1,3 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
 
 
1
+ # Empty solution example for the S23DR competition
2
+
3
+ This repo provides a minimalistic example of a valid, but empty submission to S23DR competition.
4
+ We recommend to take a look at the [another example](https://huggingface.co/usm3d/handcrafted_baseline_submission),
5
+ which implement some primitive algorithm and provides useful I/O and visualization functions.
6
+
7
+ This one, though, containt the minimal code, which succeeds at reading the dataset and producing a solution, which consists of two vertices at the origin and edge of zero length connecting them.
8
+
9
+
10
+ The repo consistst of the following parts:
11
+
12
+ - `script.py` - the main file, which is run by the competition space. It should produce `submission.parquet` as the result of the run.
13
+ - `hoho.py` - the file for parsing the dataset at the inference time. Do NOT change it.
14
+
15
+
16
  ---
17
  license: apache-2.0
18
  ---
19
+
hoho.py ADDED
@@ -0,0 +1,247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import shutil
4
+ from pathlib import Path
5
+ from typing import Dict
6
+
7
+ from PIL import ImageFile
8
+ ImageFile.LOAD_TRUNCATED_IMAGES = True
9
+
10
+ LOCAL_DATADIR = None
11
+
12
+ def setup(local_dir='./data/usm-training-data/data'):
13
+
14
+ # If we are in the test environment, we need to link the data directory to the correct location
15
+ tmp_datadir = Path('/tmp/data/data')
16
+ local_test_datadir = Path('./data/usm-test-data-x/data')
17
+ local_val_datadir = Path(local_dir)
18
+
19
+ os.system('pwd')
20
+ os.system('ls -lahtr .')
21
+
22
+ if tmp_datadir.exists() and not local_test_datadir.exists():
23
+ global LOCAL_DATADIR
24
+ LOCAL_DATADIR = local_test_datadir
25
+ # shutil.move(datadir, './usm-test-data-x/data')
26
+ print(f"Linking {tmp_datadir} to {LOCAL_DATADIR} (we are in the test environment)")
27
+ LOCAL_DATADIR.parent.mkdir(parents=True, exist_ok=True)
28
+ LOCAL_DATADIR.symlink_to(tmp_datadir)
29
+ else:
30
+ LOCAL_DATADIR = local_val_datadir
31
+ print(f"Using {LOCAL_DATADIR} as the data directory (we are running locally)")
32
+
33
+ # os.system("ls -lahtr")
34
+
35
+ assert LOCAL_DATADIR.exists(), f"Data directory {LOCAL_DATADIR} does not exist"
36
+ return LOCAL_DATADIR
37
+
38
+
39
+
40
+
41
+ import importlib
42
+ from pathlib import Path
43
+ import subprocess
44
+
45
+ def download_package(package_name, path_to_save='packages'):
46
+ """
47
+ Downloads a package using pip and saves it to a specified directory.
48
+
49
+ Parameters:
50
+ package_name (str): The name of the package to download.
51
+ path_to_save (str): The path to the directory where the package will be saved.
52
+ """
53
+ try:
54
+ # pip download webdataset -d packages/webdataset --platform manylinux1_x86_64 --python-version 38 --only-binary=:all:
55
+ subprocess.check_call([subprocess.sys.executable, "-m", "pip", "download", package_name,
56
+ "-d", str(Path(path_to_save)/package_name), # Download the package to the specified directory
57
+ "--platform", "manylinux1_x86_64", # Specify the platform
58
+ "--python-version", "38", # Specify the Python version
59
+ "--only-binary=:all:"]) # Download only binary packages
60
+ print(f'Package "{package_name}" downloaded successfully')
61
+ except subprocess.CalledProcessError as e:
62
+ print(f'Failed to downloaded package "{package_name}". Error: {e}')
63
+
64
+
65
+ def install_package_from_local_file(package_name, folder='packages'):
66
+ """
67
+ Installs a package from a local .whl file or a directory containing .whl files using pip.
68
+
69
+ Parameters:
70
+ path_to_file_or_directory (str): The path to the .whl file or the directory containing .whl files.
71
+ """
72
+ try:
73
+ pth = str(Path(folder) / package_name)
74
+ subprocess.check_call([subprocess.sys.executable, "-m", "pip", "install",
75
+ "--no-index", # Do not use package index
76
+ "--find-links", pth, # Look for packages in the specified directory or at the file
77
+ package_name]) # Specify the package to install
78
+ print(f"Package installed successfully from {pth}")
79
+ except subprocess.CalledProcessError as e:
80
+ print(f"Failed to install package from {pth}. Error: {e}")
81
+
82
+
83
+ def importt(module_name, as_name=None):
84
+ """
85
+ Imports a module and returns it.
86
+
87
+ Parameters:
88
+ module_name (str): The name of the module to import.
89
+ as_name (str): The name to use for the imported module. If None, the original module name will be used.
90
+
91
+ Returns:
92
+ The imported module.
93
+ """
94
+ for _ in range(2):
95
+ try:
96
+ if as_name is None:
97
+ print(f'imported {module_name}')
98
+ return importlib.import_module(module_name)
99
+ else:
100
+ print(f'imported {module_name} as {as_name}')
101
+ return importlib.import_module(module_name, as_name)
102
+ except ModuleNotFoundError as e:
103
+ install_package_from_local_file(module_name)
104
+ print(f"Failed to import module {module_name}. Error: {e}")
105
+
106
+
107
+ def prepare_submission():
108
+ # Download packages from requirements.txt
109
+ if Path('requirements.txt').exists():
110
+ print('downloading packages from requirements.txt')
111
+ Path('packages').mkdir(exist_ok=True)
112
+ with open('requirements.txt') as f:
113
+ packages = f.readlines()
114
+ for p in packages:
115
+ download_package(p.strip())
116
+
117
+
118
+ print('all packages downloaded. Don\'t foget to include the packages in the submission by adding them with git lfs.')
119
+
120
+
121
+
122
+ ########## general utilities ##########
123
+ import contextlib
124
+ import tempfile
125
+ from pathlib import Path
126
+
127
+ @contextlib.contextmanager
128
+ def working_directory(path):
129
+ """Changes working directory and returns to previous on exit."""
130
+ prev_cwd = Path.cwd()
131
+ os.chdir(path)
132
+ try:
133
+ yield
134
+ finally:
135
+ os.chdir(prev_cwd)
136
+
137
+ @contextlib.contextmanager
138
+ def temp_working_directory():
139
+ with tempfile.TemporaryDirectory(dir='.') as D:
140
+ with working_directory(D):
141
+ yield
142
+
143
+
144
+ ############# Dataset #############
145
+ def proc(row, split='train'):
146
+ # column_names_train = ['ade20k', 'depthcm', 'gestalt', 'colmap', 'KRt', 'mesh', 'wireframe']
147
+ # column_names_test = ['ade20k', 'depthcm', 'gestalt', 'colmap', 'KRt', 'wireframe']
148
+ # cols = column_names_train if split == 'train' else column_names_test
149
+ out = {}
150
+ for k, v in row.items():
151
+ colname = k.split('.')[0]
152
+ if colname in {'ade20k', 'depthcm', 'gestalt'}:
153
+ if colname in out:
154
+ out[colname].append(v)
155
+ else:
156
+ out[colname] = [v]
157
+ elif colname in {'wireframe', 'mesh'}:
158
+ # out.update({a: b.tolist() for a,b in v.items()})
159
+ out.update({a: b for a,b in v.items()})
160
+ elif colname in 'kr':
161
+ out[colname.upper()] = v
162
+ else:
163
+ out[colname] = v
164
+
165
+ return Sample(out)
166
+
167
+
168
+ class Sample(Dict):
169
+ def __repr__(self):
170
+ return str({k: v.shape if hasattr(v, 'shape') else [type(v[0])] if isinstance(v, list) else type(v) for k,v in self.items()})
171
+
172
+
173
+
174
+ def get_params():
175
+ exmaple_param_dict = {
176
+ "competition_id": "usm3d/S23DR",
177
+ "competition_type": "script",
178
+ "metric": "custom",
179
+ "token": "hf_**********************************",
180
+ "team_id": "local-test-team_id",
181
+ "submission_id": "local-test-submission_id",
182
+ "submission_id_col": "__key__",
183
+ "submission_cols": [
184
+ "__key__",
185
+ "wf_edges",
186
+ "wf_vertices",
187
+ "edge_semantics"
188
+ ],
189
+ "submission_rows": 180,
190
+ "output_path": ".",
191
+ "submission_repo": "<THE HF MODEL ID of THIS REPO",
192
+ "time_limit": 7200,
193
+ "dataset": "usm3d/usm-test-data-x",
194
+ "submission_filenames": [
195
+ "submission.parquet"
196
+ ]
197
+ }
198
+
199
+ param_path = Path('params.json')
200
+
201
+ if not param_path.exists():
202
+ print('params.json not found (this means we probably aren\'t in the test env). Using example params.')
203
+ params = exmaple_param_dict
204
+ else:
205
+ print('found params.json (this means we are probably in the test env). Using params from file.')
206
+ with param_path.open() as f:
207
+ params = json.load(f)
208
+ print(params)
209
+ return params
210
+
211
+
212
+
213
+ import webdataset as wds
214
+ import numpy as np
215
+
216
+ def get_dataset(decode='pil', proc=proc, split='train', dataset_type='webdataset'):
217
+ if LOCAL_DATADIR is None:
218
+ raise ValueError('LOCAL_DATADIR is not set. Please run setup() first.')
219
+
220
+ local_dir = Path(LOCAL_DATADIR)
221
+ if split != 'all':
222
+ local_dir = local_dir / split
223
+
224
+ paths = [str(p) for p in local_dir.rglob('*.tar.gz')]
225
+
226
+ dataset = wds.WebDataset(paths)
227
+ if decode is not None:
228
+ dataset = dataset.decode(decode)
229
+ else:
230
+ dataset = dataset.decode()
231
+
232
+ dataset = dataset.map(proc)
233
+
234
+ if dataset_type == 'webdataset':
235
+ return dataset
236
+
237
+ if dataset_type == 'hf':
238
+ import datasets
239
+ from datasets import Features, Value, Sequence, Image, Array2D
240
+
241
+ if split == 'train':
242
+ return datasets.IterableDataset.from_generator(lambda: dataset.iterator())
243
+ elif split == 'val':
244
+ return datasets.IterableDataset.from_generator(lambda: dataset.iterator())
245
+
246
+
247
+
script.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### This is example of the script that will be run in the test environment.
2
+ ### Some parts of the code are compulsory and you should NOT CHANGE THEM.
3
+ ### They are between '''---compulsory---''' comments.
4
+ ### You can change the rest of the code to define and test your solution.
5
+ ### However, you should not change the signature of the provided function.
6
+ ### The script would save "submission.parquet" file in the current directory.
7
+ ### You can use any additional files and subdirectories to organize your code.
8
+
9
+ '''---compulsory---'''
10
+ import hoho; hoho.setup() # YOU MUST CALL hoho.setup() BEFORE ANYTHING ELSE
11
+ from pathlib import Path
12
+ from tqdm import tqdm
13
+ import pandas as pd
14
+ import numpy as np
15
+
16
+
17
+ def empty_solution():
18
+ '''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
19
+ return np.zeros((2,3)), [(0, 1)], [0]
20
+
21
+
22
+ if __name__ == "__main__":
23
+ print ("------------ Loading dataset------------ ")
24
+ params = hoho.get_params()
25
+ dataset = hoho.get_dataset(decode=None, split='all', dataset_type='webdataset')
26
+ print('------------ Now you can do your solution ---------------')
27
+ solution = []
28
+ for i, sample in enumerate(tqdm(dataset)):
29
+ pred_vertices, pred_edges, semantics = empty_solution()
30
+ solution.append({
31
+ '__key__': sample['__key__'],
32
+ 'wf_vertices': pred_vertices.tolist(),
33
+ 'wf_edges': pred_edges,
34
+ 'edge_semantics': semantics,
35
+ })
36
+ print('------------ Saving results ---------------')
37
+ sub = pd.DataFrame(solution, columns=["__key__", "wf_vertices", "wf_edges", "edge_semantics"])
38
+ sub.to_parquet(Path(params['output_path']) / "submission.parquet")
39
+ print("------------ Done ------------ ")