Token Classification
GLiNER
PyTorch
English
urchade commited on
Commit
4932df5
1 Parent(s): 0ee345b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -4
README.md CHANGED
@@ -12,6 +12,13 @@ library_name: gliner
12
 
13
  GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
14
 
 
 
 
 
 
 
 
15
  | Release | Model Name | # of Parameters | Language | License |
16
  | - | - | - | - | - |
17
  | v0 | [urchade/gliner_base](https://huggingface.co/urchade/gliner_base)<br>[urchade/gliner_multi](https://huggingface.co/urchade/gliner_multi) | 209M<br>209M | English<br>Multilingual | cc-by-nc-4.0 |
@@ -19,10 +26,6 @@ GLiNER is a Named Entity Recognition (NER) model capable of identifying any enti
19
  | v2 | [urchade/gliner_small-v2](https://huggingface.co/urchade/gliner_small-v2)<br>[urchade/gliner_medium-v2](https://huggingface.co/urchade/gliner_medium-v2)<br>[urchade/gliner_large-v2](https://huggingface.co/urchade/gliner_large-v2) | 166M<br>209M<br>459M | English <br> English <br> English | apache-2.0 |
20
  | v2.1 | [urchade/gliner_small-v2.1](https://huggingface.co/urchade/gliner_small-v2.1)<br>[urchade/gliner_medium-v2.1](https://huggingface.co/urchade/gliner_medium-v2.1)<br>[urchade/gliner_multi-v2.1](https://huggingface.co/urchade/gliner_multi-v2.1) | 166M<br>209M<br>209M | English <br> English <br> Multilingual | apache-2.0 |
21
 
22
- ## Links
23
-
24
- * Paper: https://arxiv.org/abs/2311.08526
25
- * Repository: https://github.com/urchade/GLiNER
26
 
27
  ## Installation
28
  To use this model, you must install the GLiNER Python library:
 
12
 
13
  GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
14
 
15
+ ## Links
16
+
17
+ * Paper: https://arxiv.org/abs/2311.08526
18
+ * Repository: https://github.com/urchade/GLiNER
19
+
20
+ ## Available models
21
+
22
  | Release | Model Name | # of Parameters | Language | License |
23
  | - | - | - | - | - |
24
  | v0 | [urchade/gliner_base](https://huggingface.co/urchade/gliner_base)<br>[urchade/gliner_multi](https://huggingface.co/urchade/gliner_multi) | 209M<br>209M | English<br>Multilingual | cc-by-nc-4.0 |
 
26
  | v2 | [urchade/gliner_small-v2](https://huggingface.co/urchade/gliner_small-v2)<br>[urchade/gliner_medium-v2](https://huggingface.co/urchade/gliner_medium-v2)<br>[urchade/gliner_large-v2](https://huggingface.co/urchade/gliner_large-v2) | 166M<br>209M<br>459M | English <br> English <br> English | apache-2.0 |
27
  | v2.1 | [urchade/gliner_small-v2.1](https://huggingface.co/urchade/gliner_small-v2.1)<br>[urchade/gliner_medium-v2.1](https://huggingface.co/urchade/gliner_medium-v2.1)<br>[urchade/gliner_multi-v2.1](https://huggingface.co/urchade/gliner_multi-v2.1) | 166M<br>209M<br>209M | English <br> English <br> Multilingual | apache-2.0 |
28
 
 
 
 
 
29
 
30
  ## Installation
31
  To use this model, you must install the GLiNER Python library: