|
import hashlib |
|
import time |
|
import numpy as np |
|
from scipy import stats |
|
|
|
class TemporalLock: |
|
""" |
|
Geophysical Cycle-Based Cryptographic Validation |
|
Applications: |
|
- Secure log timestamping |
|
- Event chronology forensics |
|
""" |
|
def __init__(self): |
|
self.cycles = { |
|
'schumann': 7.83, |
|
'solar': 11.2 |
|
} |
|
|
|
def stamp(self, data: str) -> dict: |
|
"""Generate time-anchored signature""" |
|
t = time.time() |
|
moduli = [t % freq for freq in self.cycles.values()] |
|
return { |
|
'timestamp': t, |
|
'hash': hashlib.blake3( |
|
f"{data}_{t}_{moduli[0]}".encode() |
|
).hexdigest(), |
|
'cycle_alignments': moduli |
|
} |
|
|
|
def validate(self, events: list) -> float: |
|
"""Calculate anomaly confidence (0.0-1.0)""" |
|
errors = sum(e['errors'] for e in events) |
|
total = sum(e['observations'] for e in events) |
|
return min(0.99, 1 - stats.binomtest( |
|
k=errors, n=total, p=0.05 |
|
).pvalue) |