Feature Extraction
clip
vision
kimihailv commited on
Commit
d757384
1 Parent(s): 776ad29

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +190 -0
README.md ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - de
6
+ - es
7
+ - fr
8
+ - it
9
+ - ja
10
+ - ko
11
+ - pl
12
+ - ru
13
+ - tr
14
+ - zh
15
+ - ar
16
+ ---
17
+ <h1 align="center">UForm</h1>
18
+ <h3 align="center">
19
+ Multi-Modal Inference Library<br/>
20
+ For Semantic Search Applications<br/>
21
+ </h3>
22
+
23
+ ---
24
+
25
+ UForm is a Multi-Modal Modal Inference package, designed to encode Multi-Lingual Texts, Images, and, soon, Audio, Video, and Documents, into a shared vector space!
26
+
27
+ This is model card of the __Multilingual model__ (21 languages) with:
28
+
29
+ * 12 layers BERT (8 layers for unimodal encoding and rest layers for multimodal encoding)
30
+ * ViT-B/16 (image resolution is 224x224)
31
+
32
+ The model was trained on balanced multilingual dataset.
33
+
34
+ If you need English model, check [this](https://huggingface.co/unum-cloud/uform-vl-english).
35
+
36
+ ## Evaluation
37
+
38
+ For all evaluations, the multimodal part was used unless otherwise stated.
39
+
40
+ **Monolingual**
41
+
42
+ | Dataset | Recall@1 | Recall@5 | Recall@10 |
43
+ | :-------- | ------: | --------: | --------: |
44
+ | Zero-Shot Flickr | 0.558 | 0.813 | 0.874 |
45
+ | MS-COCO (train split was in training data) | 0.401 | 0.680 | 0.781 |
46
+
47
+ **Multilingual**
48
+
49
+ [XTD-10](https://github.com/adobe-research/Cross-lingual-Test-Dataset-XTD10)
50
+
51
+ Metric is recall@10
52
+
53
+
54
+ | English | German | Spanish | French | Italian | Russian | Japanese | Korean | Turkish | Chinese | Polish |
55
+ | -------: | -------: | -------: | -------: | -------: | -------: | -------: | -------: | -------: | -------: | -------:
56
+ 96.1 | 93.5 | 95.7 | 94.1 | 94.4 | 90.4 | 90.2 | 91.3 | 95.2 | 93.8 | 95.8 |
57
+
58
+
59
+ [COCO-SM](https://github.com/kimihailv/coco-sm/tree/main)
60
+
61
+ For this evaluation only unimodal part was used.
62
+
63
+ Recall
64
+
65
+ | Target Language | OpenCLIP @ 1 | UForm @ 1 | OpenCLIP @ 5 | UForm @ 5 | OpenCLIP @ 10 | UForm @ 10 | Speakers |
66
+ | :-------------------- | -----------: | ------------: | -----------: | -------------:| ------------: | --------------:| -------: |
67
+ | Arabic | 22.7 | **31.7** | 44.9 | **57.8** | 55.8 | **69.2** | 274 M |
68
+ | Armenian | 5.6 | **22.0** | 14.3 | **44.7** | 20.2 | **56.0** | 4 M |
69
+ | Chinese | 27.3 | **32.2** | 51.3 | **59.0** | 62.1 | **70.5** | 1'118 M |
70
+ | English | **37.8** | 37.7 | 63.5 | **65.0** | 73.5 | **75.9** | 1'452 M |
71
+ | French | 31.3 | **35.4** | 56.5 | **62.6** | 67.4 | **73.3** | 274 M |
72
+ | German | 31.7 | **35.1** | 56.9 | **62.2** | 67.4 | **73.3** | 134 M |
73
+ | Hebrew | 23.7 | **26.7** | 46.3 | **51.8** | 57.0 | **63.5** | 9 M |
74
+ | Hindi | 20.7 | **31.3** | 42.5 | **57.9** | 53.7 | **69.6** | 602 M |
75
+ | Indonesian | 26.9 | **30.7** | 51.4 | **57.0** | 62.7 | **68.6** | 199 M |
76
+ | Italian | 31.3 | **34.9** | 56.7 | **62.1** | 67.1 | **73.1** | 67 M |
77
+ | Japanese | 27.4 | **32.6** | 51.5 | **59.2** | 62.6 | **70.6** | 125 M |
78
+ | Korean | 24.4 | **31.5** | 48.1 | **57.8** | 59.2 | **69.2** | 81 M |
79
+ | Persian | 24.0 | **28.8** | 47.0 | **54.6** | 57.8 | **66.2** | 77 M |
80
+ | Polish | 29.2 | **33.6** | 53.9 | **60.1** | 64.7 | **71.3** | 41 M |
81
+ | Portuguese | 31.6 | **32.7** | 57.1 | **59.6** | 67.9 | **71.0** | 257 M |
82
+ | Russian | 29.9 | **33.9** | 54.8 | **60.9** | 65.8 | **72.0** | 258 M |
83
+ | Spanish | 32.6 | **35.6** | 58.0 | **62.8** | 68.8 | **73.7** | 548 M |
84
+ | Thai | 21.5 | **28.7** | 43.0 | **54.6** | 53.7 | **66.0** | 61 M |
85
+ | Turkish | 25.5 | **33.0** | 49.1 | **59.6** | 60.3 | **70.8** | 88 M |
86
+ | Ukranian | 26.0 | **30.6** | 49.9 | **56.7** | 60.9 | **68.1** | 41 M |
87
+ | Vietnamese | 25.4 | **28.3** | 49.2 | **53.9** | 60.3 | **65.5** | 85 M |
88
+ | | | | | | | | |
89
+ | Mean | 26.5±6.4 | **31.8±3.5** | 49.8±9.8 | **58.1±4.5** | 60.4±10.6 | **69.4±4.3** | - |
90
+ | Google Translate | 27.4±6.3 | **31.5±3.5** | 51.1±9.5 | **57.8±4.4** | 61.7±10.3 | **69.1±4.3** | - |
91
+ | Microsoft Translator | 27.2±6.4 | **31.4±3.6** | 50.8±9.8 | **57.7±4.7** | 61.4±10.6 | **68.9±4.6** | - |
92
+ | Meta NLLB | 24.9±6.7 | **32.4±3.5** | 47.5±10.3 | **58.9±4.5** | 58.2±11.2 | **70.2±4.3** | - |
93
+
94
+ NDCG@20
95
+
96
+ | | Arabic | Armenian | Chinese | French | German | Hebrew | Hindi | Indonesian | Italian | Japanese | Korean | Persian | Polish | Portuguese | Russian | Spanish | Thai | Turkish | Ukranian | Vietnamese | Mean (all) | Mean (Google Translate) | Mean(Microsoft Translator) | Mean(NLLB)
97
+ | :------------ | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: |
98
+ | OpenCLIP NDCG | 0.639 | 0.204 | 0.731 | 0.823 | 0.806 | 0.657 | 0.616 | 0.733 | 0.811 | 0.737 | 0.686 | 0.667 | 0.764 | 0.832 | 0.777 | 0.849 | 0.606 | 0.701 | 0.704 | 0.697 | 0.716 ± 0.149 | 0.732 ± 0.145 | 0.730 ± 0.149 | 0.686 ± 0.158
99
+ | UForm NDCG | 0.868 | 0.691 | 0.880 | 0.932 | 0.927 | 0.791 | 0.879 | 0.870 | 0.930 | 0.885 | 0.869 | 0.831 | 0.897 | 0.897 | 0.906 | 0.939 | 0.822 | 0.898 | 0.851 | 0.818 | 0.875 ± 0.064 | 0.869 ± 0.063 | 0.869 ± 0.066 | 0.888 ± 0.064
100
+
101
+ ## Installation
102
+
103
+ ```bash
104
+ pip install uform
105
+ ```
106
+
107
+ ## Usage
108
+
109
+ To load the model:
110
+
111
+ ```python
112
+ import uform
113
+
114
+ model = uform.get_model('unum-cloud/uform-vl-english')
115
+ ```
116
+
117
+ To encode data:
118
+
119
+ ```python
120
+ from PIL import Image
121
+
122
+ text = 'a small red panda in a zoo'
123
+ image = Image.open('red_panda.jpg')
124
+
125
+ image_data = model.preprocess_image(image)
126
+ text_data = model.preprocess_text(text)
127
+
128
+ image_embedding = model.encode_image(image_data)
129
+ text_embedding = model.encode_text(text_data)
130
+ joint_embedding = model.encode_multimodal(image=image_data, text=text_data)
131
+ ```
132
+
133
+ To get features:
134
+
135
+ ```python
136
+ image_features, image_embedding = model.encode_image(image_data, return_features=True)
137
+ text_features, text_embedding = model.encode_text(text_data, return_features=True)
138
+ ```
139
+
140
+ These features can later be used to produce joint multimodal encodings faster, as the first layers of the transformer can be skipped:
141
+
142
+ ```python
143
+ joint_embedding = model.encode_multimodal(
144
+ image_features=image_features,
145
+ text_features=text_features,
146
+ attention_mask=text_data['attention_mask']
147
+ )
148
+ ```
149
+
150
+ There are two options to calculate semantic compatibility between an image and a text: [Cosine Similarity](#cosine-similarity) and [Matching Score](#matching-score).
151
+
152
+ ### Cosine Similarity
153
+
154
+ ```python
155
+ import torch.nn.functional as F
156
+
157
+ similarity = F.cosine_similarity(image_embedding, text_embedding)
158
+ ```
159
+
160
+ The `similarity` will belong to the `[-1, 1]` range, `1` meaning the absolute match.
161
+
162
+ __Pros__:
163
+
164
+ - Computationally cheap.
165
+ - Only unimodal embeddings are required, unimodal encoding is faster than joint encoding.
166
+ - Suitable for retrieval in large collections.
167
+
168
+ __Cons__:
169
+
170
+ - Takes into account only coarse-grained features.
171
+
172
+
173
+ ### Matching Score
174
+
175
+ Unlike cosine similarity, unimodal embedding are not enough.
176
+ Joint embedding will be needed and the resulting `score` will belong to the `[0, 1]` range, `1` meaning the absolute match.
177
+
178
+ ```python
179
+ score = model.get_matching_scores(joint_embedding)
180
+ ```
181
+
182
+ __Pros__:
183
+
184
+ - Joint embedding captures fine-grained features.
185
+ - Suitable for re-ranking – sorting retrieval result.
186
+
187
+ __Cons__:
188
+
189
+ - Resource-intensive.
190
+ - Not suitable for retrieval in large collections.