kimihailv commited on
Commit
62c84fb
1 Parent(s): 1a3b7a9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -10
README.md CHANGED
@@ -78,16 +78,6 @@ score, joint_embedding = model.encode_multimodal(
78
 
79
  There are two options to calculate semantic compatibility between an image and a text: cosine similarity and [Matching Score](#matching-score).
80
 
81
- ### Cosine Similarity
82
-
83
- ```python
84
- import torch.nn.functional as F
85
-
86
- similarity = F.cosine_similarity(image_embedding, text_embedding)
87
- ```
88
-
89
- The `similarity` will belong to the `[-1, 1]` range, `1` meaning the absolute match.
90
-
91
  __Pros__:
92
 
93
  - Computationally cheap.
 
78
 
79
  There are two options to calculate semantic compatibility between an image and a text: cosine similarity and [Matching Score](#matching-score).
80
 
 
 
 
 
 
 
 
 
 
 
81
  __Pros__:
82
 
83
  - Computationally cheap.