unography commited on
Commit
f34bfc1
·
verified ·
1 Parent(s): a396271

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -3,7 +3,7 @@ license: bsd-3-clause
3
  tags:
4
  - image-captioning
5
  datasets:
6
- - unography/laion-81k-GPT4V-LIVIS-Captions
7
  pipeline_tag: image-to-text
8
  languages:
9
  - en
@@ -50,7 +50,7 @@ inputs = processor(raw_image, return_tensors="pt")
50
  pixel_values = inputs.pixel_values
51
  out = model.generate(pixel_values=pixel_values, max_length=250, num_beams=3, repetition_penalty=2.5)
52
  print(processor.decode(out[0], skip_special_tokens=True))
53
- >>> a woman sitting on a sandy beach, interacting with a dog wearing a blue and white checkered shirt. the background is an ocean or sea with waves crashing in the distance. there are no other animals or people visible in the image.
54
 
55
  ```
56
  </details>
@@ -67,8 +67,8 @@ import requests
67
  from PIL import Image
68
  from transformers import BlipProcessor, BlipForConditionalGeneration
69
 
70
- processor = BlipProcessor.from_pretrained("unography/blip-large-long-cap")
71
- model = BlipForConditionalGeneration.from_pretrained("unography/blip-large-long-cap").to("cuda")
72
 
73
  img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
74
  raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
@@ -77,7 +77,7 @@ inputs = processor(raw_image, return_tensors="pt").to("cuda")
77
  pixel_values = inputs.pixel_values
78
  out = model.generate(pixel_values=pixel_values, max_length=250, num_beams=3, repetition_penalty=2.5)
79
  print(processor.decode(out[0], skip_special_tokens=True))
80
- >>> a woman sitting on a sandy beach, interacting with a dog wearing a blue and white checkered shirt. the background is an ocean or sea with waves crashing in the distance. there are no other animals or people visible in the image.
81
  ```
82
  </details>
83
 
@@ -92,8 +92,8 @@ import requests
92
  from PIL import Image
93
  from transformers import BlipProcessor, BlipForConditionalGeneration
94
 
95
- processor = BlipProcessor.from_pretrained("unography/blip-large-long-cap")
96
- model = BlipForConditionalGeneration.from_pretrained("unography/blip-large-long-cap", torch_dtype=torch.float16).to("cuda")
97
 
98
  img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
99
  raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
@@ -102,6 +102,6 @@ inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
102
  pixel_values = inputs.pixel_values
103
  out = model.generate(pixel_values=pixel_values, max_length=250, num_beams=3, repetition_penalty=2.5)
104
  print(processor.decode(out[0], skip_special_tokens=True))
105
- >>> a woman sitting on a sandy beach, interacting with a dog wearing a blue and white checkered shirt. the background is an ocean or sea with waves crashing in the distance. there are no other animals or people visible in the image.
106
  ```
107
  </details>
 
3
  tags:
4
  - image-captioning
5
  datasets:
6
+ - unography/laion-14k-GPT4V-LIVIS-Captions
7
  pipeline_tag: image-to-text
8
  languages:
9
  - en
 
50
  pixel_values = inputs.pixel_values
51
  out = model.generate(pixel_values=pixel_values, max_length=250, num_beams=3, repetition_penalty=2.5)
52
  print(processor.decode(out[0], skip_special_tokens=True))
53
+ >>> a woman sitting on the sand, interacting with a dog wearing a blue and white checkered collar. the dog is positioned to the left of the woman, who is holding something in their hand. the background features a serene beach setting with waves crashing onto the shore. there are no other animals or people visible in the image. the time of day appears to be either early morning or late afternoon, based on the lighting and shadows.
54
 
55
  ```
56
  </details>
 
67
  from PIL import Image
68
  from transformers import BlipProcessor, BlipForConditionalGeneration
69
 
70
+ processor = BlipProcessor.from_pretrained("unography/blip-long-cap")
71
+ model = BlipForConditionalGeneration.from_pretrained("unography/blip-long-cap").to("cuda")
72
 
73
  img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
74
  raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
 
77
  pixel_values = inputs.pixel_values
78
  out = model.generate(pixel_values=pixel_values, max_length=250, num_beams=3, repetition_penalty=2.5)
79
  print(processor.decode(out[0], skip_special_tokens=True))
80
+ >>> a woman sitting on the sand, interacting with a dog wearing a blue and white checkered collar. the dog is positioned to the left of the woman, who is holding something in their hand. the background features a serene beach setting with waves crashing onto the shore. there are no other animals or people visible in the image. the time of day appears to be either early morning or late afternoon, based on the lighting and shadows.
81
  ```
82
  </details>
83
 
 
92
  from PIL import Image
93
  from transformers import BlipProcessor, BlipForConditionalGeneration
94
 
95
+ processor = BlipProcessor.from_pretrained("unography/blip-long-cap")
96
+ model = BlipForConditionalGeneration.from_pretrained("unography/blip-long-cap", torch_dtype=torch.float16).to("cuda")
97
 
98
  img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
99
  raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
 
102
  pixel_values = inputs.pixel_values
103
  out = model.generate(pixel_values=pixel_values, max_length=250, num_beams=3, repetition_penalty=2.5)
104
  print(processor.decode(out[0], skip_special_tokens=True))
105
+ >>> a woman sitting on the sand, interacting with a dog wearing a blue and white checkered collar. the dog is positioned to the left of the woman, who is holding something in their hand. the background features a serene beach setting with waves crashing onto the shore. there are no other animals or people visible in the image. the time of day appears to be either early morning or late afternoon, based on the lighting and shadows.
106
  ```
107
  </details>