ppo-LunarLander-v2 / config.json
unlikezy's picture
2nd time to train without change
dfe6a5d verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a07e4907d90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a07e4907e20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a07e4907eb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a07e4907f40>", "_build": "<function ActorCriticPolicy._build at 0x7a07e4914040>", "forward": "<function ActorCriticPolicy.forward at 0x7a07e49140d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a07e4914160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a07e49141f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a07e4914280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a07e4914310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a07e49143a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a07e4914430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a07e4aacc00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1721039477785341462, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrdOL127Xe8jOe3PLmwcz1CK6i9E/9YPAAAgD8AAIA/murHvOQpXz8Ksgk9pAKNvveAb7yrBU+8AAAAAAAAAACTOlA+jX5sP1q0VT19oqO+Ka8WPlKdDr0AAAAAAAAAADPtsbxslYO7wu54uwts6jy01Eo8GyTougAAgD8AAIA/baoLPj+2Zj+6PVS8thOQvpOJnj1OI/K9AAAAAAAAAAAzz1G8uyL/PZtzKb3AN1a+99glPOEPCr4AAAAAAAAAAJpj6ryBL1s/4wD0vHpXpb4NJWQ8vvyHvQAAAAAAAAAAs724vcO9XLrCYj46JV1WNsr7Hbs2A2C5AAAAAAAAgD+z0MA9FFiausJaarmxy120qJlqOvJGhzgAAIA/AAAAAEBRtj1cv1i61tdSuX5nsrQCqCA7ygR0OAAAAAAAAIA/zfwzPAFZsj9Fo349Lnd/vvCyFz3jZIA9AAAAAAAAAADmtgS9uHaxuW1dcroby/q1ajQMOtaSjzkAAIA/AACAP41xsT1Iq4G68z2Ruh5pWTfB9t25svukOQAAgD8AAIA/1karvnfjdT907Iy+9a3Fvqgo0r6ChYs9AAAAAAAAAACw56y+MrR7PwrZhb5qiqy+jmzqvkLmCj0AAAAAAAAAAJpSaj1D9Ay8hhK/PBPRKL3Y8Sq8J6MovgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG5+qyWzF/CMAWyUTRUDjAF0lEdAqOTVQbdadXV9lChoBkdAbOw+10DEFWgHTZcCaAhHQKjk11yNn5B1fZQoaAZHQGHRU7bL2YhoB03oA2gIR0Co5WMnRb8ndX2UKGgGR0BkjlIClrM1aAdN6ANoCEdAqOeUE/0NBnV9lChoBkdAZSB5B1LamGgHTegDaAhHQKj0IWNWEK51fZQoaAZHQHFVUhaC+URoB025A2gIR0Co9j98Z1mrdX2UKGgGR0BsErC53C9AaAdNrgNoCEdAqPc90aIeo3V9lChoBkdAcWnPcSGrS2gHTSMCaAhHQKj3YEvCdjJ1fZQoaAZHQGJwhVuJk5JoB03oA2gIR0Co+Jzd+G47dX2UKGgGR0BhDNHtnf2saAdN6ANoCEdAqPojKkl/pnV9lChoBkdAcaSOoHcDbWgHTbMBaAhHQKj6g+9rXUZ1fZQoaAZHQHCObRjSXt1oB023AWgIR0Co+pne7+UAdX2UKGgGR0BkBaiTMaCMaAdN6ANoCEdAqPt3+yZ8bHV9lChoBkdAcsN1UVBUrGgHTRACaAhHQKj821y/9Hd1fZQoaAZHQGEgIxYaHbhoB03oA2gIR0Co/qOZb6gvdX2UKGgGR0Bku3hwVCXyaAdN6ANoCEdAqP7NCqp97XV9lChoBkdAa190g8r7O2gHTYMBaAhHQKj/SWIoE0V1fZQoaAZHQGBRDT8YQ8RoB03oA2gIR0Co/0m1hLGrdX2UKGgGR0Bwx6mrKeTWaAdNcQNoCEdAqP9lo6CDmXV9lChoBkdAcirAzHjp92gHTX4BaAhHQKkAHgSeyzJ1fZQoaAZHQET3nXd0q6RoB0v8aAhHQKkAcivgWJt1fZQoaAZHQGdwKRuCPIZoB03oA2gIR0CpA2S6+WWydX2UKGgGR0BweTHU+cH4aAdNagFoCEdAqQsDSPU8WHV9lChoBkdAYxb4W1twaWgHTegDaAhHQKkMuCz1K5F1fZQoaAZHQHIuenIhhYxoB03eAWgIR0CpDRk1/DtPdX2UKGgGR0BxA4/4ZdfLaAdNXgNoCEdAqReFiay8jHV9lChoBkdAcI7vRZ2ZA2gHTVwCaAhHQKkXjB3Roh91fZQoaAZHQGU1AHu7YkFoB03oA2gIR0CpF+Md92HMdX2UKGgGR0BsuvNJOFg2aAdNRwJoCEdAqRiOhAWznnV9lChoBkdAbdyrI5o4/GgHTZgCaAhHQKkaLVrAP/d1fZQoaAZHQG/qZQxesxRoB02kAmgIR0CpGxHr6ciGdX2UKGgGR0BgjKZ8a4tpaAdN6ANoCEdAqRwCc3EQ5HV9lChoBkdAcMWuZkTYd2gHTTQBaAhHQKkdU/qxC6Z1fZQoaAZHQGPWRDTjNpxoB03oA2gIR0CpHZrdN34cdX2UKGgGR0BscFRWLgn/aAdNDAFoCEdAqR3zUiILxHV9lChoBkdAYTFVS4vvjWgHTegDaAhHQKkeADHwPRR1fZQoaAZHQGZHbHhjvuxoB03oA2gIR0CpHwExqO94dX2UKGgGR0BwSWALApKBaAdNdgFoCEdAqR8YsiB5HHV9lChoBkdAb2vjyWiUPmgHTWoBaAhHQKkfrmSQo1F1fZQoaAZHQG8sRtxdY4hoB01tAWgIR0CpH7k3sHB2dX2UKGgGR0Bv5ZGx2SuAaAdNsAJoCEdAqR++AEt/WnV9lChoBkdAcJGD1XeWOmgHTSsCaAhHQKkh4vcrRSh1fZQoaAZHQDdqRHPNVzZoB00KAWgIR0CpIiNjLB9DdX2UKGgGR0BiNwAS39aVaAdN6ANoCEdAqSK2xfOUuHV9lChoBkdAZ0RJDE3sHGgHTegDaAhHQKkj1AIIF/x1fZQoaAZHQHGOGCI1tO5oB022AWgIR0CpJNqCQLeAdX2UKGgGR0BvKjByjpLVaAdNpgFoCEdAqSi0Z5zHTHV9lChoBkdAcPynAIppe2gHTW4BaAhHQKko6yN4qw11fZQoaAZHQDE0QcxTKkloB0v4aAhHQKkpIarmyPd1fZQoaAZHQB/ASamXPZ9oB0v9aAhHQKkpfBhQWN51fZQoaAZHQGzmIRh+fAdoB03tAWgIR0CpKu5CngpCdX2UKGgGR0BuJChi9ZieaAdNsQFoCEdAqSttkpZwGXV9lChoBkdAcSZp7kXDWWgHTeMBaAhHQKksAHcDbJx1fZQoaAZHQG0tFhXr+o9oB01mAWgIR0CpLKDwH7gsdX2UKGgGR0BxzimZVn27aAdNMQJoCEdAqS5ve3x4IXV9lChoBkdAcKA5uqFRHmgHTZMBaAhHQKkvJlT3qRl1fZQoaAZHQG+IeGfwqiJoB03JAWgIR0CpL6TEit7sdX2UKGgGR0BxC7Rv3rUtaAdNVwFoCEdAqToIevIOpnV9lChoBkdAbQAkdmxt52gHTaUCaAhHQKk6P+BpYcN1fZQoaAZHQGPJBUR3/xVoB03oA2gIR0CpOlBAWznidX2UKGgGR0BDre1KGtZFaAdNDQFoCEdAqTq6L2pQ13V9lChoBkdAbiFT2nKnvWgHTWwBaAhHQKk7SP4EfT11fZQoaAZHQExMQA+6iCdoB00QAWgIR0CpPDSPuG9IdX2UKGgGR0BwpUZm7J4jaAdNYQFoCEdAqTx3WYnfEXV9lChoBkdAbv1hWHUMHGgHTcMBaAhHQKk88bIcR151fZQoaAZHQGGKmIsRQJpoB03oA2gIR0CpPTfSpiqidX2UKGgGR0Bx7n7/GVAzaAdNigFoCEdAqT6H4CZF5XV9lChoBkdAbw4xbB42TGgHTf8BaAhHQKk+oAHVwxZ1fZQoaAZHQDtj1BdD6WRoB0vPaAhHQKk/KKtPpIN1fZQoaAZHQGViPFm4AjpoB03oA2gIR0CpP4la8pTddX2UKGgGR0BynhWMju8caAdNKgFoCEdAqT+V0tAcDXV9lChoBkdAYbz39rGipWgHTegDaAhHQKlAMGM4tHx1fZQoaAZHQG3K2hRIjGFoB01NAWgIR0CpQO/OlfqpdX2UKGgGR0Bwt12pyZKGaAdNHgFoCEdAqUHp5VwPy3V9lChoBkdAcNn2Cdz4lGgHTYkBaAhHQKlDWzIFNcp1fZQoaAZHQCIhsANoak1oB0vqaAhHQKlDs5iExqR1fZQoaAZHQHACcNDtw71oB02bAWgIR0CpQ9A/s3Q2dX2UKGgGR0Bvd17WuoxYaAdNdgFoCEdAqUSZWDHwPXV9lChoBkdAbuALl3hXKmgHTXEBaAhHQKlEs5DJEIB1fZQoaAZHQHCnubVjI7xoB028AWgIR0CpROoKUmlZdX2UKGgGR0Bxvus5n13/aAdNHgFoCEdAqUWM7p3X7XV9lChoBkdAcGn5zHS4OWgHTcABaAhHQKlG5PEbYK91fZQoaAZHQHII5PIn0CloB03fAWgIR0CpR0qZc9nsdX2UKGgGR0BukmbgCOm0aAdNWwFoCEdAqUde+qR2bHV9lChoBkdAcCJJQtSQ5mgHTcICaAhHQKlHZIK+i8F1fZQoaAZHQFIfSi/O+qRoB0vNaAhHQKlHxzoUzsR1fZQoaAZHQHC/07CBPKxoB00lAWgIR0CpR+SlWOp9dX2UKGgGR0BwoEGcFyJbaAdNtAFoCEdAqUhh0+1SfnV9lChoBkdANdj3RG+bmWgHS+toCEdAqUko1DSgG3V9lChoBkdAb5VvTgEU02gHTSoBaAhHQKlJpbcGkep1fZQoaAZHQHIa5KraM75oB03KAWgIR0CpSflId2gWdX2UKGgGR0BwXaHUMG5daAdNJQFoCEdAqUooGIKtxXV9lChoBkdAcW8I8yN4q2gHTUUBaAhHQKlK82G7Bft1fZQoaAZHQG4ayeqaPS5oB00eAWgIR0CpTRL5ZbIMdX2UKGgGR0BwVZmJ3xFzaAdNPAFoCEdAqU0dga3qiXV9lChoBkdAcL23225QQGgHTT4BaAhHQKlNQNiH6/J1fZQoaAZHQHFfUxubZvloB00QAmgIR0CpTX0f5k9VdX2UKGgGR0BwJueTV2A5aAdNMgFoCEdAqU2aeZof0XV9lChoBkdAM//eDWbw0GgHS+5oCEdAqU2kKPXCj3V9lChoBkdAbkPMPBi1A2gHTXsBaAhHQKlOZtj0+Tx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}