|
using System.Collections.Generic; |
|
using UnityEngine; |
|
using Unity.Sentis; |
|
using System.Text; |
|
using Unity.Collections; |
|
|
|
public class RunWhisper : MonoBehaviour |
|
{ |
|
Worker decoder1, decoder2, encoder, spectrogram; |
|
Worker argmax; |
|
|
|
public AudioClip audioClip; |
|
|
|
|
|
const int maxTokens = 100; |
|
|
|
|
|
const int END_OF_TEXT = 50257; |
|
const int START_OF_TRANSCRIPT = 50258; |
|
const int ENGLISH = 50259; |
|
const int GERMAN = 50261; |
|
const int FRENCH = 50265; |
|
const int TRANSCRIBE = 50359; |
|
const int TRANSLATE = 50358; |
|
const int NO_TIME_STAMPS = 50363; |
|
const int START_TIME = 50364; |
|
|
|
int numSamples; |
|
string[] tokens; |
|
|
|
int tokenCount = 0; |
|
NativeArray<int> outputTokens; |
|
|
|
|
|
int[] whiteSpaceCharacters = new int[256]; |
|
|
|
Tensor<float> encodedAudio; |
|
|
|
bool transcribe = false; |
|
string outputString = ""; |
|
|
|
|
|
const int maxSamples = 30 * 16000; |
|
|
|
public ModelAsset audioDecoder1, audioDecoder2; |
|
public ModelAsset audioEncoder; |
|
public ModelAsset logMelSpectro; |
|
|
|
public async void Start() |
|
{ |
|
SetupWhiteSpaceShifts(); |
|
GetTokens(); |
|
|
|
decoder1 = new Worker(ModelLoader.Load(audioDecoder1), BackendType.GPUCompute); |
|
decoder2 = new Worker(ModelLoader.Load(audioDecoder2), BackendType.GPUCompute); |
|
|
|
FunctionalGraph graph = new FunctionalGraph(); |
|
var input = graph.AddInput(DataType.Float, new DynamicTensorShape(1, 1, 51865)); |
|
var amax = Functional.ArgMax(input, -1, false); |
|
var selectTokenModel = graph.Compile(amax); |
|
argmax = new Worker(selectTokenModel, BackendType.GPUCompute); |
|
|
|
encoder = new Worker(ModelLoader.Load(audioEncoder), BackendType.GPUCompute); |
|
spectrogram = new Worker(ModelLoader.Load(logMelSpectro), BackendType.GPUCompute); |
|
|
|
outputTokens = new NativeArray<int>(maxTokens, Allocator.Persistent); |
|
|
|
outputTokens[0] = START_OF_TRANSCRIPT; |
|
outputTokens[1] = ENGLISH; |
|
outputTokens[2] = TRANSCRIBE; |
|
|
|
tokenCount = 2; |
|
|
|
LoadAudio(); |
|
EncodeAudio(); |
|
transcribe = true; |
|
|
|
tokensTensor = new Tensor<int>(new TensorShape(1, maxTokens)); |
|
ComputeTensorData.Pin(tokensTensor); |
|
tokensTensor.Reshape(new TensorShape(1, tokenCount)); |
|
tokensTensor.dataOnBackend.Upload<int>(outputTokens, tokenCount); |
|
|
|
lastToken = new NativeArray<int>(1, Allocator.Persistent); lastToken[0] = NO_TIME_STAMPS; |
|
lastTokenTensor = new Tensor<int>(new TensorShape(1, 1), new[] { NO_TIME_STAMPS }); |
|
|
|
while (true) |
|
{ |
|
if (!transcribe || tokenCount >= (outputTokens.Length - 1)) |
|
return; |
|
m_Awaitable = InferenceStep(); |
|
await m_Awaitable; |
|
} |
|
} |
|
Awaitable m_Awaitable; |
|
|
|
NativeArray<int> lastToken; |
|
Tensor<int> lastTokenTensor; |
|
Tensor<int> tokensTensor; |
|
Tensor<float> audioInput; |
|
|
|
void LoadAudio() |
|
{ |
|
numSamples = audioClip.samples; |
|
var data = new float[maxSamples]; |
|
numSamples = maxSamples; |
|
audioClip.GetData(data, 0); |
|
audioInput = new Tensor<float>(new TensorShape(1, numSamples), data); |
|
} |
|
|
|
void EncodeAudio() |
|
{ |
|
spectrogram.Schedule(audioInput); |
|
var logmel = spectrogram.PeekOutput() as Tensor<float>; |
|
encoder.Schedule(logmel); |
|
encodedAudio = encoder.PeekOutput() as Tensor<float>; |
|
} |
|
async Awaitable InferenceStep() |
|
{ |
|
decoder1.SetInput("input_ids", tokensTensor); |
|
decoder1.SetInput("encoder_hidden_states", encodedAudio); |
|
decoder1.Schedule(); |
|
|
|
var past_key_values_0_decoder_key = decoder1.PeekOutput("present.0.decoder.key") as Tensor<float>; |
|
var past_key_values_0_decoder_value = decoder1.PeekOutput("present.0.decoder.value") as Tensor<float>; |
|
var past_key_values_1_decoder_key = decoder1.PeekOutput("present.1.decoder.key") as Tensor<float>; |
|
var past_key_values_1_decoder_value = decoder1.PeekOutput("present.1.decoder.value") as Tensor<float>; |
|
var past_key_values_2_decoder_key = decoder1.PeekOutput("present.2.decoder.key") as Tensor<float>; |
|
var past_key_values_2_decoder_value = decoder1.PeekOutput("present.2.decoder.value") as Tensor<float>; |
|
var past_key_values_3_decoder_key = decoder1.PeekOutput("present.3.decoder.key") as Tensor<float>; |
|
var past_key_values_3_decoder_value = decoder1.PeekOutput("present.3.decoder.value") as Tensor<float>; |
|
|
|
var past_key_values_0_encoder_key = decoder1.PeekOutput("present.0.encoder.key") as Tensor<float>; |
|
var past_key_values_0_encoder_value = decoder1.PeekOutput("present.0.encoder.value") as Tensor<float>; |
|
var past_key_values_1_encoder_key = decoder1.PeekOutput("present.1.encoder.key") as Tensor<float>; |
|
var past_key_values_1_encoder_value = decoder1.PeekOutput("present.1.encoder.value") as Tensor<float>; |
|
var past_key_values_2_encoder_key = decoder1.PeekOutput("present.2.encoder.key") as Tensor<float>; |
|
var past_key_values_2_encoder_value = decoder1.PeekOutput("present.2.encoder.value") as Tensor<float>; |
|
var past_key_values_3_encoder_key = decoder1.PeekOutput("present.3.encoder.key") as Tensor<float>; |
|
var past_key_values_3_encoder_value = decoder1.PeekOutput("present.3.encoder.value") as Tensor<float>; |
|
|
|
decoder2.SetInput("input_ids", lastTokenTensor); |
|
decoder2.SetInput("past_key_values.0.decoder.key", past_key_values_0_decoder_key); |
|
decoder2.SetInput("past_key_values.0.decoder.value", past_key_values_0_decoder_value); |
|
decoder2.SetInput("past_key_values.1.decoder.key", past_key_values_1_decoder_key); |
|
decoder2.SetInput("past_key_values.1.decoder.value", past_key_values_1_decoder_value); |
|
decoder2.SetInput("past_key_values.2.decoder.key", past_key_values_2_decoder_key); |
|
decoder2.SetInput("past_key_values.2.decoder.value", past_key_values_2_decoder_value); |
|
decoder2.SetInput("past_key_values.3.decoder.key", past_key_values_3_decoder_key); |
|
decoder2.SetInput("past_key_values.3.decoder.value", past_key_values_3_decoder_value); |
|
|
|
decoder2.SetInput("past_key_values.0.encoder.key", past_key_values_0_encoder_key); |
|
decoder2.SetInput("past_key_values.0.encoder.value", past_key_values_0_encoder_value); |
|
decoder2.SetInput("past_key_values.1.encoder.key", past_key_values_1_encoder_key); |
|
decoder2.SetInput("past_key_values.1.encoder.value", past_key_values_1_encoder_value); |
|
decoder2.SetInput("past_key_values.2.encoder.key", past_key_values_2_encoder_key); |
|
decoder2.SetInput("past_key_values.2.encoder.value", past_key_values_2_encoder_value); |
|
decoder2.SetInput("past_key_values.3.encoder.key", past_key_values_3_encoder_key); |
|
decoder2.SetInput("past_key_values.3.encoder.value", past_key_values_3_encoder_value); |
|
|
|
decoder2.Schedule(); |
|
|
|
var logits = decoder2.PeekOutput("logits") as Tensor<float>; |
|
argmax.Schedule(logits); |
|
using var t_Token = await argmax.PeekOutput().ReadbackAndCloneAsync() as Tensor<int>; |
|
int index = t_Token[0]; |
|
|
|
tokenCount++; |
|
outputTokens[tokenCount] = lastToken[0]; |
|
lastToken[0] = index; |
|
tokensTensor.Reshape(new TensorShape(1, tokenCount)); |
|
tokensTensor.dataOnBackend.Upload<int>(outputTokens, tokenCount); |
|
lastTokenTensor.dataOnBackend.Upload<int>(lastToken, 1); |
|
|
|
if (index == END_OF_TEXT) |
|
{ |
|
transcribe = false; |
|
} |
|
else if (index < tokens.Length) |
|
{ |
|
outputString += GetUnicodeText(tokens[index]); |
|
} |
|
|
|
Debug.Log(outputString); |
|
} |
|
|
|
|
|
public TextAsset jsonFile; |
|
void GetTokens() |
|
{ |
|
var vocab = Newtonsoft.Json.JsonConvert.DeserializeObject<Dictionary<string, int>>(jsonFile.text); |
|
tokens = new string[vocab.Count]; |
|
foreach (var item in vocab) |
|
{ |
|
tokens[item.Value] = item.Key; |
|
} |
|
} |
|
|
|
string GetUnicodeText(string text) |
|
{ |
|
var bytes = Encoding.GetEncoding("ISO-8859-1").GetBytes(ShiftCharacterDown(text)); |
|
return Encoding.UTF8.GetString(bytes); |
|
} |
|
|
|
string ShiftCharacterDown(string text) |
|
{ |
|
string outText = ""; |
|
foreach (char letter in text) |
|
{ |
|
outText += ((int)letter <= 256) ? letter : |
|
(char)whiteSpaceCharacters[(int)(letter - 256)]; |
|
} |
|
return outText; |
|
} |
|
|
|
void SetupWhiteSpaceShifts() |
|
{ |
|
for (int i = 0, n = 0; i < 256; i++) |
|
{ |
|
if (IsWhiteSpace((char)i)) whiteSpaceCharacters[n++] = i; |
|
} |
|
} |
|
|
|
bool IsWhiteSpace(char c) |
|
{ |
|
return !(('!' <= c && c <= '~') || ('�' <= c && c <= '�') || ('�' <= c && c <= '�')); |
|
} |
|
|
|
private void OnDestroy() |
|
{ |
|
decoder1.Dispose(); |
|
decoder2.Dispose(); |
|
encoder.Dispose(); |
|
spectrogram.Dispose(); |
|
argmax.Dispose(); |
|
audioInput.Dispose(); |
|
lastTokenTensor.Dispose(); |
|
tokensTensor.Dispose(); |
|
} |
|
} |
|
|