umbertospazio's picture
Upload PPO LunarLander-v2 trained agent
3642508
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc340c95290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc340c95320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc340c953b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc340c95440>", "_build": "<function ActorCriticPolicy._build at 0x7fc340c954d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc340c95560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc340c955f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc340c95680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc340c95710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc340c957a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc340c95830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc340d35180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652630197.4603324, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKat3r3husy4PqmFu0cagDx9aNI7GyVhvQAAgD8AAIA/zVZWvI/OQbrZaTEzPlnyrlHAuLrSUs6zAACAPwAAgD/mfSQ9OydUPxUc1T0fdAO/aW5JPdo4RDwAAAAAAAAAAIa5Ez5uPTs/+wVNvcsg9L6gAdo9zT8BvgAAAAAAAAAAJieYPZMKPz9KqDc9Wo7Uvm9rDT6ujF+9AAAAAAAAAADmYn0+f9RwP7J3/D11fQu/7Z+tPmZiGL0AAAAAAAAAAPOuu732XBy8O9aBvP2zgzyB16S9ek5bPQAAAAAAAIA/mnFePHc6Lj7my9a9Ho9NvlVzH71ab9a7AAAAAAAAAADmh2q9EnzhPKbEz727xDq+/wYevYgnAb0AAAAAAAAAAJoZqjuLALI/HUSDPixZ7b51CoK7br6WvAAAAAAAAAAAs2wUvSm8A7p5Fcy2SWxCsWKDC7s7lfA1AACAPwAAgD/mWKu97O0BPjLuEj5BLpy+I7U3PFZpJD0AAAAAAAAAAI0et70KGlY8lLuNPR1ThL6bRck8YZ4EOwAAAAAAAAAAAKfmvfa4NboVUq282wGEPGz66zpYNWO9AACAPwAAgD8Aeqm94e6Auv4bm7bR0Xex5uYEuz03tzUAAIA/AACAP3Pe+r17Cgo/VLYCPpJ02L4G4ca9Rs6+PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZkrrb4mycUCUhpRSlIwBbJRL+YwBdJRHQJtwz0Gu9vl1fZQoaAZoCWgPQwhdGOlFLSxzQJSGlFKUaBVL6GgWR0CbcNVlf7aadX2UKGgGaAloD0MImboru6C8cECUhpRSlGgVS/toFkdAm3EMgyM1j3V9lChoBmgJaA9DCKfqHtlcoHBAlIaUUpRoFUvRaBZHQJtxcduHerN1fZQoaAZoCWgPQwjrHW6HhipxQJSGlFKUaBVNAwFoFkdAm3HIrz5GjXV9lChoBmgJaA9DCBo1XyVfq3JAlIaUUpRoFU0RAWgWR0Cbch6uGKyfdX2UKGgGaAloD0MIUfnX8spNckCUhpRSlGgVS/NoFkdAm3LP4dp7C3V9lChoBmgJaA9DCBb4im69THJAlIaUUpRoFUvQaBZHQJty8l3Qla91fZQoaAZoCWgPQwi8XS9NUcRxQJSGlFKUaBVNAwFoFkdAm3MY+4b0e3V9lChoBmgJaA9DCCZzLO9qDnNAlIaUUpRoFU0MAWgWR0CbczxX4j8ldX2UKGgGaAloD0MIdsb3xSUucUCUhpRSlGgVS9poFkdAm3OBQ79ycXV9lChoBmgJaA9DCKHyr+UVWm5AlIaUUpRoFUvraBZHQJtzinHeaa11fZQoaAZoCWgPQwhwd9Zuu75xQJSGlFKUaBVNCAFoFkdAm3W9mYjSonV9lChoBmgJaA9DCHNlUG1wHXFAlIaUUpRoFU0IAWgWR0Cbdgr5IpYtdX2UKGgGaAloD0MIAtcVM0Jyc0CUhpRSlGgVS89oFkdAm3Yo95hScnV9lChoBmgJaA9DCLyyCwZXp25AlIaUUpRoFU0KAWgWR0CbdwM2WIGhdX2UKGgGaAloD0MIdCUC1f/wckCUhpRSlGgVS+BoFkdAm3e55zHS4XV9lChoBmgJaA9DCD8fZcSFi3BAlIaUUpRoFUv3aBZHQJt4BW7voeR1fZQoaAZoCWgPQwja4a/JGutvQJSGlFKUaBVNFgFoFkdAm3iG2kSElHV9lChoBmgJaA9DCMA9z582rXBAlIaUUpRoFUvxaBZHQJt4o+W4Vh11fZQoaAZoCWgPQwi6EKs/gttwQJSGlFKUaBVNJgFoFkdAm3i+XNTtLXV9lChoBmgJaA9DCCNNvAO8o3BAlIaUUpRoFUvVaBZHQJt5Fbpu/Dd1fZQoaAZoCWgPQwgVGR2QRHNxQJSGlFKUaBVL4mgWR0CbeR4yXUpedX2UKGgGaAloD0MIDOavkDmtcECUhpRSlGgVS+FoFkdAm3k83dbgTHV9lChoBmgJaA9DCKMjufzHAHNAlIaUUpRoFUvtaBZHQJt5Qdfb9Ih1fZQoaAZoCWgPQwiMEYlCCwFxQJSGlFKUaBVL8GgWR0CbefpNKyv+dX2UKGgGaAloD0MItDnObQLuckCUhpRSlGgVTQsBaBZHQJt6l33YcvN1fZQoaAZoCWgPQwjt8xjlmWNXQJSGlFKUaBVN6ANoFkdAm3sdkFwDNnV9lChoBmgJaA9DCK4Mqg0OT3JAlIaUUpRoFUvbaBZHQJt7w+5e7cx1fZQoaAZoCWgPQwghPxu5bnVzQJSGlFKUaBVL9WgWR0CbfBayrxRVdX2UKGgGaAloD0MIBRcravAEckCUhpRSlGgVS/ZoFkdAm3xx1LamGnV9lChoBmgJaA9DCHY3T3UIznFAlIaUUpRoFUvzaBZHQJuP2D6Fds11fZQoaAZoCWgPQwhK7xtf+wVxQJSGlFKUaBVL02gWR0CbkEVGkN4JdX2UKGgGaAloD0MIQFHZsKbyVkCUhpRSlGgVS9RoFkdAm5B4gJTl1nV9lChoBmgJaA9DCPQ2NjuSSHFAlIaUUpRoFUv4aBZHQJuQ0IRh+fB1fZQoaAZoCWgPQwheEJGaNg5xQJSGlFKUaBVNBAFoFkdAm5DfKQq7RXV9lChoBmgJaA9DCGEcXDom63JAlIaUUpRoFUv2aBZHQJuRRGPPszF1fZQoaAZoCWgPQwi78lmeB5JyQJSGlFKUaBVL4GgWR0CbkT80UGmldX2UKGgGaAloD0MIoZ4+Aj9mckCUhpRSlGgVS/hoFkdAm5HPm5lOGnV9lChoBmgJaA9DCCwrTUrBf3FAlIaUUpRoFUvgaBZHQJuSB5prULF1fZQoaAZoCWgPQwheoQ+WMUxyQJSGlFKUaBVNFQFoFkdAm5JUs8PnS3V9lChoBmgJaA9DCKkVpu91qHJAlIaUUpRoFU0kAWgWR0CbkrFEiMYNdX2UKGgGaAloD0MIXmOXqJ5rcUCUhpRSlGgVS9VoFkdAm5LPddmg8XV9lChoBmgJaA9DCG4Xmuu0+nFAlIaUUpRoFUv1aBZHQJuTELBsQ/Z1fZQoaAZoCWgPQwgnMnOByxpTQJSGlFKUaBVLlmgWR0Cbk1RcNYr8dX2UKGgGaAloD0MIqifzjz4Zc0CUhpRSlGgVS99oFkdAm5P1NtZV43V9lChoBmgJaA9DCLSqJR1ltHJAlIaUUpRoFUv6aBZHQJuU9NdqtYB1fZQoaAZoCWgPQwjr4ctEUZlzQJSGlFKUaBVNGwFoFkdAm5UC5I6KcnV9lChoBmgJaA9DCAqFCDiEGXFAlIaUUpRoFUvSaBZHQJuVPe9Ba9t1fZQoaAZoCWgPQwjC2hg74RhzQJSGlFKUaBVL6GgWR0CblY8Sf16FdX2UKGgGaAloD0MIih2NQz2Hc0CUhpRSlGgVS9doFkdAm5WpZB9kSXV9lChoBmgJaA9DCJp7SPhe829AlIaUUpRoFUvXaBZHQJuWD5ftx+91fZQoaAZoCWgPQwjTMecZuxByQJSGlFKUaBVL72gWR0CblkB91EE1dX2UKGgGaAloD0MIVp+rrZgvcUCUhpRSlGgVS9xoFkdAm5axKL8763V9lChoBmgJaA9DCNqoTgeyy3JAlIaUUpRoFU0IAWgWR0CblyQ/5ckddX2UKGgGaAloD0MIF6BtNStGc0CUhpRSlGgVS/1oFkdAm5f5qIrOJXV9lChoBmgJaA9DCP5IERmWwHJAlIaUUpRoFU0OAWgWR0CbmBHFPznSdX2UKGgGaAloD0MIRfKVQAo3cECUhpRSlGgVS+NoFkdAm5gmT1TR6XV9lChoBmgJaA9DCGmqJ/PPIXJAlIaUUpRoFUv0aBZHQJuYUezUqhF1fZQoaAZoCWgPQwg4TZ8d8KpwQJSGlFKUaBVL82gWR0CbmNlHjIaMdX2UKGgGaAloD0MIG7rZHygVc0CUhpRSlGgVTR0BaBZHQJuZFlbu+h51fZQoaAZoCWgPQwgnFCLg0JBwQJSGlFKUaBVL5WgWR0CbmTUcn3L3dX2UKGgGaAloD0MIdqc7T3zVcECUhpRSlGgVS9poFkdAm5nxMJx//nV9lChoBmgJaA9DCARUOIKU3HJAlIaUUpRoFUvVaBZHQJuaeqOtGNJ1fZQoaAZoCWgPQwjHSPYI9c1wQJSGlFKUaBVL52gWR0CbmtDRtxdZdX2UKGgGaAloD0MIYRxcOubRb0CUhpRSlGgVTQUBaBZHQJua6kxh2GJ1fZQoaAZoCWgPQwjAQXv1MfhwQJSGlFKUaBVL/mgWR0CbmwhGpda/dX2UKGgGaAloD0MIBaOSOkE+cECUhpRSlGgVS+VoFkdAm5tJrULDynV9lChoBmgJaA9DCCUEq+olg3BAlIaUUpRoFUvsaBZHQJubnM4cWCV1fZQoaAZoCWgPQwgJbw9CwG9wQJSGlFKUaBVL7WgWR0CbnBUXpGF0dX2UKGgGaAloD0MIBwySPm3lckCUhpRSlGgVS+xoFkdAm5x8iSq2jXV9lChoBmgJaA9DCDPBcK5hCHJAlIaUUpRoFUvqaBZHQJudOVVxS511fZQoaAZoCWgPQwg6ysFsgghyQJSGlFKUaBVL6WgWR0CbnV1q33HrdX2UKGgGaAloD0MI9FFGXAAUc0CUhpRSlGgVS/1oFkdAm528XSBsh3V9lChoBmgJaA9DCBWoxeBhAXNAlIaUUpRoFUvyaBZHQJudsr7O3Uh1fZQoaAZoCWgPQwjDnQsj/YxyQJSGlFKUaBVL22gWR0CbnbtbcGkfdX2UKGgGaAloD0MILIL/reSFcUCUhpRSlGgVS9hoFkdAm53mIoE0SHV9lChoBmgJaA9DCJdw6C1efXBAlIaUUpRoFUvUaBZHQJud7xtpEhJ1fZQoaAZoCWgPQwi94NOc/PpwQJSGlFKUaBVL1GgWR0Cbn75Fw1iwdX2UKGgGaAloD0MINxrAWyDFcUCUhpRSlGgVS+NoFkdAm5/+mm+Cb3V9lChoBmgJaA9DCMxAZfz7E3NAlIaUUpRoFU0aAWgWR0CboFe3x4IKdX2UKGgGaAloD0MIuM1UiMcNckCUhpRSlGgVTQYBaBZHQJuga5WilBR1fZQoaAZoCWgPQwhV+Z6RiKFyQJSGlFKUaBVNAwFoFkdAm6Co3R5TqHV9lChoBmgJaA9DCKQ0m8chO3FAlIaUUpRoFUviaBZHQJugtqi48U51fZQoaAZoCWgPQwjey31yVAZxQJSGlFKUaBVNAQFoFkdAm6EM4DLbH3V9lChoBmgJaA9DCOlfkspUn3JAlIaUUpRoFU0EAWgWR0CboejuKGcndX2UKGgGaAloD0MIxF29ikzycUCUhpRSlGgVTQABaBZHQJuiRfE4vOB1fZQoaAZoCWgPQwhmhSLdTz9xQJSGlFKUaBVL1GgWR0CbopIDHOrydX2UKGgGaAloD0MI8IY0KjCEckCUhpRSlGgVS+9oFkdAm6Kt3GGVRnV9lChoBmgJaA9DCArXo3C9XnJAlIaUUpRoFUvXaBZHQJui0tJ4B3l1fZQoaAZoCWgPQwgrbAa4oBFuQJSGlFKUaBVL8mgWR0CbouSNfgJkdX2UKGgGaAloD0MIIsSVs/docECUhpRSlGgVS+5oFkdAm6MYFmnO0XV9lChoBmgJaA9DCBEcl3GTOHJAlIaUUpRoFU0QAWgWR0Cbo9Tl1bJPdX2UKGgGaAloD0MIcD51rNKycECUhpRSlGgVTQoBaBZHQJuj6GCZnct1fZQoaAZoCWgPQwiGG/D5YfBwQJSGlFKUaBVLy2gWR0CbpRSUTtb+dX2UKGgGaAloD0MIkUYFTvYlckCUhpRSlGgVS/RoFkdAm6VlyBClanV9lChoBmgJaA9DCB06Pe/GBG5AlIaUUpRoFU0EAWgWR0CbpYsFt8/mdX2UKGgGaAloD0MIyH2rdeJlcUCUhpRSlGgVS+5oFkdAm6WW4Vh1DHV9lChoBmgJaA9DCHMqGQAqVHFAlIaUUpRoFUvsaBZHQJuln+1jRUp1fZQoaAZoCWgPQwjdC8wKhftxQJSGlFKUaBVNEwFoFkdAm6bWlZX+2nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}