augusnunes commited on
Commit
4a5a0aa
·
1 Parent(s): be1bb4d

Adding SentenceTransformers's LegalBERTPT-br and README

Browse files
0_Transformer/config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "neuralmind/bert-base-portuguese-cased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "directionality": "bidi",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "output_past": true,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "transformers_version": "4.6.1",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 29794
31
+ }
0_Transformer/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37bf2ba5b420399e84e94e109f5ca37f65a464b4fa6d95468a9a616bc5fd04eb
3
+ size 435776311
0_Transformer/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 32,
3
+ "do_lower_case": false
4
+ }
0_Transformer/special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
0_Transformer/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
0_Transformer/tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": "/root/.cache/huggingface/transformers/eecc45187d085a1169eed91017d358cc0e9cbdd5dc236bcd710059dbf0a2f816.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "name_or_path": "neuralmind/bert-base-portuguese-cased", "do_basic_tokenize": true, "never_split": null}
0_Transformer/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,3 +1,40 @@
1
  ---
 
2
  license: mit
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: pt
3
  license: mit
4
+ tags:
5
+ - sentence-transformers
6
  ---
7
+
8
+ # LegalBERTPT-br
9
+
10
+ LegalBERTPT-br is a trained sentence embedding using SimCSE, a contrastive learning framework, coupled with the Portuguese pre-trained language model named [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased).
11
+
12
+
13
+ # Corpora
14
+
15
+ – From [this site](https://www2.camara.leg.br/transparencia/servicos-ao-cidadao/participacao-popular), we used the column `Conteudo` with 215,713 comments. We removed the comments from PL 3723/2019, PEC 471/2005, and Hashtag Corpus, in order to avoid bias.
16
+ – From [this site](https://www2.camara.leg.br/transparencia/servicos-ao-cidadao/participacao-popular), we also used 147,008 bills. From these projects, we used the summary field named `txtEmenta` and the project core text named `txtExplicacaoEmenta`.
17
+ – From Political Speeches, we used 462,831 texts, specifically, we used the columns: `sumario`, `textodiscurso`, and `indexacao`.
18
+
19
+ These corpora were segmented into sentences and concatenated, producing 2,307,426 sentences.
20
+
21
+
22
+ # Citing and Authors
23
+
24
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
25
+
26
+ If you find this model helpful, feel free to cite our publication [Evaluating Topic Models in Portuguese Political Comments About Bills from Brazil’s Chamber of Deputies](https://link.springer.com/chapter/10.1007/978-3-030-91699-2_8):
27
+ ```bibtex
28
+ @inproceedings{bracis,
29
+ author = {Nádia Silva and Marília Silva and Fabíola Pereira and João Tarrega and João Beinotti and Márcio Fonseca and Francisco Andrade and André Carvalho},
30
+ title = {Evaluating Topic Models in Portuguese Political Comments About Bills from Brazil’s Chamber of Deputies},
31
+ booktitle = {Anais da X Brazilian Conference on Intelligent Systems},
32
+ location = {Online},
33
+ year = {2021},
34
+ keywords = {},
35
+ issn = {0000-0000},
36
+ publisher = {SBC},
37
+ address = {Porto Alegre, RS, Brasil},
38
+ url = {https://sol.sbc.org.br/index.php/bracis/article/view/19061}
39
+ }
40
+ ```
config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "__version__": "1.2.0"
3
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "0_Transformer",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]