Base model registered and uploaded
Browse files- README.md +199 -0
- config.json +46 -0
- configuration_travisionlm.py +94 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- modeling_travisionlm.py +520 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "ucsahin/TRaVisionLM-base-final-unregistered",
|
3 |
+
"architectures": [
|
4 |
+
"TraVisionForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_travisionlm.TraVisionLMConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_travisionlm.TraVisionForCausalLM"
|
9 |
+
},
|
10 |
+
"hidden_size": 1280,
|
11 |
+
"ignore_index": -100,
|
12 |
+
"image_token_index": 50257,
|
13 |
+
"model_type": "travisionlm",
|
14 |
+
"num_image_tokens": 256,
|
15 |
+
"projection_dim": 768,
|
16 |
+
"text_config": {
|
17 |
+
"architectures": [
|
18 |
+
"GPT2LMHeadModel"
|
19 |
+
],
|
20 |
+
"bos_token_id": 0,
|
21 |
+
"eos_token_id": 0,
|
22 |
+
"model_type": "gpt2",
|
23 |
+
"n_ctx": 1024,
|
24 |
+
"n_embd": 1280,
|
25 |
+
"n_head": 20,
|
26 |
+
"n_layer": 36,
|
27 |
+
"pad_token_id": 0,
|
28 |
+
"reorder_and_upcast_attn": true,
|
29 |
+
"scale_attn_by_inverse_layer_idx": true,
|
30 |
+
"task_specific_params": {
|
31 |
+
"text-generation": {
|
32 |
+
"do_sample": true,
|
33 |
+
"max_length": 50
|
34 |
+
}
|
35 |
+
},
|
36 |
+
"torch_dtype": "float32",
|
37 |
+
"vocab_size": 51282
|
38 |
+
},
|
39 |
+
"torch_dtype": "float32",
|
40 |
+
"transformers_version": "4.44.0.dev0",
|
41 |
+
"vision_config": {
|
42 |
+
"image_size": 256,
|
43 |
+
"model_type": "siglip_vision_model",
|
44 |
+
"projection_dim": 768
|
45 |
+
}
|
46 |
+
}
|
configuration_travisionlm.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""TraVisionLM configuration"""
|
2 |
+
|
3 |
+
from transformers import PretrainedConfig
|
4 |
+
from transformers import logging, CONFIG_MAPPING
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
logger = logging.get_logger(__name__)
|
8 |
+
|
9 |
+
class TraVisionLMConfig(PretrainedConfig):
|
10 |
+
model_type = "travisionlm"
|
11 |
+
is_composition = False
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
vision_config=None,
|
16 |
+
text_config=None,
|
17 |
+
ignore_index=-100,
|
18 |
+
image_token_idx=50257,
|
19 |
+
vocab_size=51282,
|
20 |
+
projection_dim=768,
|
21 |
+
hidden_size=1280,
|
22 |
+
**kwargs,
|
23 |
+
):
|
24 |
+
self.ignore_index = ignore_index
|
25 |
+
self.image_token_index = image_token_idx
|
26 |
+
self._vocab_size = vocab_size
|
27 |
+
self.projection_dim = projection_dim
|
28 |
+
self.hidden_size = hidden_size
|
29 |
+
self.vision_config = vision_config
|
30 |
+
self.is_encoder_decoder = False
|
31 |
+
if isinstance(self.vision_config, dict):
|
32 |
+
vision_config["model_type"] = (
|
33 |
+
vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model"
|
34 |
+
)
|
35 |
+
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
|
36 |
+
elif vision_config is None:
|
37 |
+
self.vision_config = CONFIG_MAPPING["siglip_vision_model"](
|
38 |
+
attention_dropout=0.0,
|
39 |
+
hidden_act="gelu_pytorch_tanh",
|
40 |
+
hidden_size=768,
|
41 |
+
image_size=256,
|
42 |
+
intermediate_size=3072,
|
43 |
+
layer_norm_eps=1e-06,
|
44 |
+
num_attention_heads=12,
|
45 |
+
num_channels=3,
|
46 |
+
num_hidden_layers=12,
|
47 |
+
patch_size=16,
|
48 |
+
)
|
49 |
+
self.vocab_size = vocab_size
|
50 |
+
|
51 |
+
self.text_config = text_config
|
52 |
+
|
53 |
+
if isinstance(self.text_config, dict):
|
54 |
+
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gpt2"
|
55 |
+
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
|
56 |
+
elif text_config is None:
|
57 |
+
self.text_config = CONFIG_MAPPING["gpt2"](
|
58 |
+
activation_function="gelu_new",
|
59 |
+
attn_pdrop=0.1,
|
60 |
+
embd_pdrop=0.1,
|
61 |
+
initializer_range=0.02,
|
62 |
+
layer_norm_epsilon=1e-05,
|
63 |
+
n_ctx=1024,
|
64 |
+
n_embd=1280,
|
65 |
+
n_head=20,
|
66 |
+
n_layer=36,
|
67 |
+
n_positions=1024,
|
68 |
+
reorder_and_upcast_attn=False,
|
69 |
+
resid_pdrop=0.1,
|
70 |
+
scale_attn_by_inverse_layer_idx=False,
|
71 |
+
scale_attn_weights=True,
|
72 |
+
vocab_size=vocab_size
|
73 |
+
)
|
74 |
+
self.num_image_tokens = (self.vision_config.image_size // self.vision_config.patch_size) ** 2
|
75 |
+
self.pad_token_id = self.text_config.pad_token_id
|
76 |
+
self.vision_config.projection_dim = projection_dim
|
77 |
+
super().__init__(**kwargs)
|
78 |
+
|
79 |
+
@property
|
80 |
+
def vocab_size(self):
|
81 |
+
warnings.warn(
|
82 |
+
"The `vocab_size` attribute is deprecated and will be removed in v4.44, Please use `text_config.vocab_size` instead.",
|
83 |
+
FutureWarning,
|
84 |
+
)
|
85 |
+
return self._vocab_size
|
86 |
+
|
87 |
+
@vocab_size.setter
|
88 |
+
def vocab_size(self, value):
|
89 |
+
self._vocab_size = value
|
90 |
+
|
91 |
+
def to_dict(self):
|
92 |
+
output = super().to_dict()
|
93 |
+
output.pop("_vocab_size", None)
|
94 |
+
return output
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 0,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.44.0.dev0"
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84db9d17f7b2db7e2fa107682bf1a214f1d6a2615c2b0b8dd295db0d0d721ff8
|
3 |
+
size 3498353344
|
modeling_travisionlm.py
ADDED
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""PyTorch TraVisionLM"""
|
2 |
+
import torch
|
3 |
+
from transformers import PreTrainedModel, AutoModel, AutoModelForCausalLM
|
4 |
+
from transformers.utils import logging, add_start_docstrings, ModelOutput
|
5 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask_for_sdpa
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
from torch import nn
|
9 |
+
from transformers.cache_utils import Cache
|
10 |
+
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
from .configuration_travisionlm import TraVisionLMConfig
|
14 |
+
|
15 |
+
_CONFIG_FOR_DOC = "TraVisionLMConfig"
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class TraVisionCausalLMOutputWithPast(ModelOutput):
|
19 |
+
"""
|
20 |
+
Base class for TraVision language model (or autoregressive) outputs.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
24 |
+
Language modeling loss (for next-token prediction).
|
25 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
26 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
27 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
28 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
29 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
30 |
+
|
31 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
32 |
+
`past_key_values` input) to speed up sequential decoding.
|
33 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
34 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
35 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
36 |
+
|
37 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
38 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
39 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
40 |
+
sequence_length)`.
|
41 |
+
|
42 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
43 |
+
heads.
|
44 |
+
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
45 |
+
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
46 |
+
sequence_length, hidden_size)`.
|
47 |
+
|
48 |
+
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
49 |
+
"""
|
50 |
+
loss: Optional[torch.FloatTensor] = None
|
51 |
+
logits: torch.FloatTensor = None
|
52 |
+
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None
|
53 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
54 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
55 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
56 |
+
|
57 |
+
|
58 |
+
class TraVisionMultiModalProjector(nn.Module):
|
59 |
+
"""
|
60 |
+
Multimodal projector that cast the image features into the same dimension space as the language model
|
61 |
+
"""
|
62 |
+
def __init__(self, config: TraVisionLMConfig, dropout=0.1):
|
63 |
+
super().__init__()
|
64 |
+
self.net = nn.Sequential(
|
65 |
+
nn.Linear(config.vision_config.projection_dim, 4*config.vision_config.projection_dim, bias=True),
|
66 |
+
nn.GELU(),
|
67 |
+
nn.Linear(4*config.vision_config.projection_dim, config.hidden_size, bias=True),
|
68 |
+
nn.Dropout(dropout)
|
69 |
+
)
|
70 |
+
|
71 |
+
def forward(self, image_features):
|
72 |
+
hidden_states = self.net(image_features).to(image_features.dtype)
|
73 |
+
return hidden_states
|
74 |
+
|
75 |
+
|
76 |
+
TRAVISIONLM_START_DOCSTRING = r"""
|
77 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
78 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
79 |
+
etc.)
|
80 |
+
|
81 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
82 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
83 |
+
and behavior.
|
84 |
+
|
85 |
+
Parameters:
|
86 |
+
config ([`TraVisionLMConfig`]):
|
87 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
88 |
+
load the weights associated with the model, only the configuration. Check out the
|
89 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
90 |
+
"""
|
91 |
+
|
92 |
+
@add_start_docstrings(
|
93 |
+
"The bare TraVision Model outputting raw hidden-states without any specific head on top.",
|
94 |
+
TRAVISIONLM_START_DOCSTRING,
|
95 |
+
)
|
96 |
+
|
97 |
+
class TraVisionPreTrainedModel(PreTrainedModel):
|
98 |
+
config_class = TraVisionLMConfig
|
99 |
+
base_model_prefix = "model"
|
100 |
+
supports_gradient_checkpointing = True
|
101 |
+
_no_split_modules = ["TraVisionMultiModalProjector"]
|
102 |
+
_skip_keys_device_placement = "past_key_values"
|
103 |
+
_supports_flash_attn_2 = True
|
104 |
+
_supports_sdpa = True
|
105 |
+
|
106 |
+
def _init_weights(self, module):
|
107 |
+
# Do NOT init the weights of the model using this class call, this is a ported version,
|
108 |
+
# hence not intended to be trained from scratch.
|
109 |
+
std = (
|
110 |
+
self.config.initializer_range
|
111 |
+
if hasattr(self.config, "initializer_range")
|
112 |
+
else self.config.text_config.initializer_range
|
113 |
+
)
|
114 |
+
|
115 |
+
if hasattr(module, "class_embedding"):
|
116 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
117 |
+
|
118 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
119 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
120 |
+
if module.bias is not None:
|
121 |
+
module.bias.data.zero_()
|
122 |
+
elif isinstance(module, nn.Embedding):
|
123 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
124 |
+
if module.padding_idx is not None:
|
125 |
+
module.weight.data[module.padding_idx].zero_()
|
126 |
+
|
127 |
+
@property
|
128 |
+
def _supports_sdpa(self):
|
129 |
+
"""
|
130 |
+
Retrieve language_model's attribute to check whether the model supports
|
131 |
+
SDPA or not.
|
132 |
+
"""
|
133 |
+
return self.language_model._supports_sdpa
|
134 |
+
|
135 |
+
|
136 |
+
@add_start_docstrings(
|
137 |
+
"""The TraVisionLM model which consists of a vision backbone and a language model.""",
|
138 |
+
TRAVISIONLM_START_DOCSTRING,
|
139 |
+
)
|
140 |
+
class TraVisionForCausalLM(TraVisionPreTrainedModel):
|
141 |
+
def __init__(self, config: TraVisionLMConfig):
|
142 |
+
super(TraVisionForCausalLM, self).__init__(config)
|
143 |
+
self.vocab_size = config.vocab_size
|
144 |
+
self.pad_token_id = -1 if config.pad_token_id == None else config.pad_token_id
|
145 |
+
self._attn_implementation = config._attn_implementation
|
146 |
+
self.gradient_checkpointing = False
|
147 |
+
|
148 |
+
self.vision_tower = AutoModel.from_config(config=config.vision_config)
|
149 |
+
self.vision_projector = TraVisionMultiModalProjector(config)
|
150 |
+
|
151 |
+
language_model = AutoModelForCausalLM.from_config(
|
152 |
+
config=config.text_config, attn_implementation=self._attn_implementation
|
153 |
+
)
|
154 |
+
|
155 |
+
if language_model._tied_weights_keys is not None:
|
156 |
+
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
|
157 |
+
|
158 |
+
self.language_model = language_model
|
159 |
+
|
160 |
+
self.post_init()
|
161 |
+
|
162 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.get_input_embeddings with PaliGemma->TraVisionLM
|
163 |
+
def get_input_embeddings(self):
|
164 |
+
return self.language_model.get_input_embeddings()
|
165 |
+
|
166 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.set_input_embeddings with PaliGemma->TraVisionLM
|
167 |
+
def set_input_embeddings(self, value):
|
168 |
+
self.language_model.set_input_embeddings(value)
|
169 |
+
|
170 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.get_output_embeddings with PaliGemma->TraVisionLM
|
171 |
+
def get_output_embeddings(self):
|
172 |
+
return self.language_model.get_output_embeddings()
|
173 |
+
|
174 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.set_output_embeddings with PaliGemma->TraVisionLM
|
175 |
+
def set_output_embeddings(self, new_embeddings):
|
176 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
177 |
+
|
178 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.set_decoder with PaliGemma->TraVisionLM
|
179 |
+
def set_decoder(self, decoder):
|
180 |
+
self.language_model.set_decoder(decoder)
|
181 |
+
|
182 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.get_decoder with PaliGemma->TraVisionLM
|
183 |
+
def get_decoder(self):
|
184 |
+
return self.language_model.get_decoder()
|
185 |
+
|
186 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration.tie_weights with PaliGemma->TraVisionLM
|
187 |
+
def tie_weights(self):
|
188 |
+
return self.language_model.tie_weights()
|
189 |
+
|
190 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
191 |
+
# TODO: config.vocab_size is deprecated and will be removed in v4.43.
|
192 |
+
# `resize_token_embeddings` should work from `modeling_utils.py``
|
193 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
194 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
195 |
+
self.config.vocab_size = model_embeds.num_embeddings
|
196 |
+
self.vocab_size = model_embeds.num_embeddings
|
197 |
+
return model_embeds
|
198 |
+
|
199 |
+
# Copied from transformers.models.paligemma.modeling_paligemma.PaliGemmaForConditionalGeneration._merge_input_ids_with_image_features with PaliGemma->TraVisionLM
|
200 |
+
""" !!! Two significant modifications are made to the original code:
|
201 |
+
------> 1) The pad and eos tokens are set to be the same in TraVisionProcessor. Hence, only the features corresponding to the padding mask are filtered out
|
202 |
+
using the attention mask.
|
203 |
+
------> 2) The features corresponding to both the prompts (called prefixes in PaliGemma) and labels (called suffixes in PaliGemma) are added the final embedding tensor
|
204 |
+
and the tokens of both the prompts and labels are applied causal attention mask. All the image tokens are attended using full-attention mask.
|
205 |
+
NOTE: In the original PaliGemma implementation, only the suffix tokens are applied causal masking. Check out [PaliGemma arXiv Paper](https://arxiv.org/pdf/2407.07726)
|
206 |
+
for the details.
|
207 |
+
"""
|
208 |
+
def _merge_input_ids_with_image_features(
|
209 |
+
self, image_features, inputs_embeds, input_ids, attention_mask, labels, token_type_ids, cache_position
|
210 |
+
):
|
211 |
+
_, _, embed_dim = image_features.shape
|
212 |
+
batch_size, sequence_length = input_ids.shape
|
213 |
+
dtype, device = inputs_embeds.dtype, inputs_embeds.device
|
214 |
+
min_dtype = torch.finfo(dtype).min
|
215 |
+
|
216 |
+
scaled_image_features = image_features / (self.config.hidden_size**0.5)
|
217 |
+
final_embedding = torch.zeros(
|
218 |
+
batch_size, sequence_length, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
219 |
+
)
|
220 |
+
|
221 |
+
text_mask = (input_ids != self.config.image_token_index) & (attention_mask | input_ids != self.config.text_config.pad_token_id)
|
222 |
+
image_mask = input_ids == self.config.image_token_index
|
223 |
+
pad_mask = (attention_mask == 0) & (input_ids == self.config.text_config.pad_token_id)
|
224 |
+
|
225 |
+
# expand masks to match embedding dimension
|
226 |
+
text_mask_expanded = text_mask.unsqueeze(-1).expand(-1, -1, embed_dim).to(inputs_embeds.device)
|
227 |
+
pad_mask_expanded = pad_mask.unsqueeze(-1).expand(-1, -1, embed_dim).to(inputs_embeds.device)
|
228 |
+
# insert padding and text token embeddings
|
229 |
+
final_embedding = torch.where(text_mask_expanded, inputs_embeds, final_embedding)
|
230 |
+
final_embedding = torch.where(pad_mask_expanded, torch.zeros_like(final_embedding), final_embedding)
|
231 |
+
# insert image embeddings - the image mask is always less or equal to the sentence in length
|
232 |
+
final_embedding = final_embedding.masked_scatter(
|
233 |
+
image_mask.unsqueeze(-1).expand_as(final_embedding).to(device=final_embedding.device),
|
234 |
+
scaled_image_features.to(device=final_embedding.device, dtype=final_embedding.dtype),
|
235 |
+
)
|
236 |
+
final_embedding = torch.where(pad_mask_expanded, torch.zeros_like(final_embedding), final_embedding)
|
237 |
+
if attention_mask is not None:
|
238 |
+
position_ids = (attention_mask.cumsum(-1)).masked_fill_((attention_mask == 0), 1)
|
239 |
+
else:
|
240 |
+
position_ids = None
|
241 |
+
|
242 |
+
if token_type_ids is not None:
|
243 |
+
# we are training thus we need to create a full mask on the image, but causal on prompt and suffix
|
244 |
+
target_length = cache_position[-1] + 1
|
245 |
+
causal_mask = torch.full(
|
246 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
247 |
+
)
|
248 |
+
if sequence_length != 1:
|
249 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
250 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
251 |
+
causal_mask = causal_mask[None, None, :, :].expand(inputs_embeds.shape[0], 1, -1, -1)
|
252 |
+
if attention_mask is not None:
|
253 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
254 |
+
mask_length = attention_mask.shape[-1]
|
255 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
256 |
+
causal_mask.device
|
257 |
+
)
|
258 |
+
# unmask the prefill
|
259 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
260 |
+
token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0
|
261 |
+
)
|
262 |
+
padding_mask = padding_mask == 0
|
263 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
264 |
+
padding_mask, min_dtype
|
265 |
+
)
|
266 |
+
|
267 |
+
final_labels = None
|
268 |
+
if labels is not None:
|
269 |
+
final_labels = torch.full(
|
270 |
+
(batch_size, sequence_length), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
|
271 |
+
)
|
272 |
+
final_labels = torch.where((attention_mask | input_ids != self.config.text_config.pad_token_id), labels, final_labels)
|
273 |
+
else:
|
274 |
+
causal_mask = attention_mask.unsqueeze(1).unsqueeze(2) * attention_mask.unsqueeze(1).unsqueeze(-1)
|
275 |
+
# invert causal mask
|
276 |
+
causal_mask = torch.where(causal_mask == 0, min_dtype, 0).to(dtype)
|
277 |
+
final_labels = None
|
278 |
+
|
279 |
+
return final_embedding, causal_mask, final_labels, position_ids
|
280 |
+
|
281 |
+
|
282 |
+
def forward(
|
283 |
+
self,
|
284 |
+
input_ids: torch.LongTensor = None,
|
285 |
+
pixel_values: torch.FloatTensor = None,
|
286 |
+
attention_mask: Optional[torch.Tensor] = None,
|
287 |
+
position_ids: Optional[torch.LongTensor] = None,
|
288 |
+
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
|
289 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
290 |
+
cache_position: Optional[torch.LongTensor] = None,
|
291 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
292 |
+
labels: Optional[torch.LongTensor] = None,
|
293 |
+
use_cache: Optional[bool] = None,
|
294 |
+
output_attentions: Optional[bool] = None,
|
295 |
+
output_hidden_states: Optional[bool] = None,
|
296 |
+
return_dict: Optional[bool] = None,
|
297 |
+
) -> Union[Tuple, TraVisionCausalLMOutputWithPast]:
|
298 |
+
|
299 |
+
if labels is not None:
|
300 |
+
use_cache = False
|
301 |
+
|
302 |
+
if input_ids is not None and inputs_embeds is not None:
|
303 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
304 |
+
elif input_ids is not None:
|
305 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
306 |
+
input_shape = input_ids.size()
|
307 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
308 |
+
batch_size = input_ids.shape[0]
|
309 |
+
elif inputs_embeds is not None:
|
310 |
+
input_shape = inputs_embeds.size()[:-1]
|
311 |
+
batch_size = inputs_embeds.shape[0]
|
312 |
+
else:
|
313 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
314 |
+
|
315 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
316 |
+
output_hidden_states = (
|
317 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
318 |
+
)
|
319 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
320 |
+
|
321 |
+
if past_key_values is None:
|
322 |
+
past_length = 0
|
323 |
+
past_key_values = tuple([None] * len(self.language_model.transformer.h))
|
324 |
+
else:
|
325 |
+
past_length = past_key_values[0][0].size(-2)
|
326 |
+
if position_ids is None:
|
327 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=input_ids.device if input_ids is not None else inputs_embeds.device)
|
328 |
+
position_ids = position_ids.unsqueeze(0)
|
329 |
+
|
330 |
+
# the attention mask is turned 4d after, we keep track of the original one
|
331 |
+
input_attention_mask = attention_mask
|
332 |
+
|
333 |
+
if inputs_embeds is None:
|
334 |
+
# 1. Extract the input embeddings
|
335 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
336 |
+
|
337 |
+
# 2. Add the absolute positional embeddings to only text token locations in inputs_embeds
|
338 |
+
if pixel_values is not None and inputs_embeds.shape[1] != 1:
|
339 |
+
# Compute the initial mask for position IDs
|
340 |
+
position_ids_mask = torch.where(input_ids != self.config.image_token_index, position_ids, 1)
|
341 |
+
# Update the mask for positions where input_ids is not zero
|
342 |
+
position_ids_mask[:, :-1] = torch.where(input_ids[:, :-1] != 0, position_ids_mask[:, :-1], 1)
|
343 |
+
# Find the first position embedding locations
|
344 |
+
first_position_embed_locs = torch.sum(position_ids_mask == 1, dim=1)
|
345 |
+
# Adjust the mask by subtracting the first position embedding locations
|
346 |
+
position_ids_mask.sub_(first_position_embed_locs[:, None])
|
347 |
+
# Ensure all values in the mask are non-negative --> assign values 1 to pad and image token locations
|
348 |
+
position_emb_ids = torch.where(position_ids_mask >= 0, position_ids_mask, 1)
|
349 |
+
# construct position embeddings using position_emb_ids
|
350 |
+
position_embeds = self.language_model.transformer.wpe(position_emb_ids)
|
351 |
+
else:
|
352 |
+
# In this case, we generate from cache with past_key_values
|
353 |
+
pos_emb_ind = position_ids.view(batch_size, -1)
|
354 |
+
position_embeds = self.language_model.transformer.wpe(pos_emb_ind)
|
355 |
+
|
356 |
+
# Directly add position_embeds to inputs_embeds to get hidden_states
|
357 |
+
hidden_states = inputs_embeds + position_embeds
|
358 |
+
|
359 |
+
# 3. Merge text and images
|
360 |
+
if pixel_values is not None and input_ids.shape[1] != 1:
|
361 |
+
# make sure that pixel values are of 4D dimensions (batch_size, num_channels, width, height)
|
362 |
+
if pixel_values.dim() == 3:
|
363 |
+
pixel_values = pixel_values.unsqueeze(dim=0)
|
364 |
+
|
365 |
+
image_outputs = self.vision_tower(pixel_values.to(inputs_embeds.dtype))
|
366 |
+
selected_image_feature = image_outputs.last_hidden_state
|
367 |
+
image_features = self.vision_projector(selected_image_feature)
|
368 |
+
|
369 |
+
if cache_position is None:
|
370 |
+
cache_position = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device)
|
371 |
+
hidden_states, attention_mask, labels, _ = self._merge_input_ids_with_image_features(
|
372 |
+
image_features, hidden_states, input_ids, attention_mask, labels, token_type_ids, cache_position
|
373 |
+
)
|
374 |
+
|
375 |
+
else:
|
376 |
+
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
|
377 |
+
# generation with cache, we can use standard causal masking
|
378 |
+
if past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
|
379 |
+
# Attention mask.
|
380 |
+
_use_sdpa = self._attn_implementation == "sdpa" and output_attentions is False
|
381 |
+
if attention_mask is not None:
|
382 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
383 |
+
if self._attn_implementation == "flash_attention_2":
|
384 |
+
attention_mask = attention_mask if 0 in attention_mask else None
|
385 |
+
elif _use_sdpa:
|
386 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
387 |
+
attention_mask=attention_mask,
|
388 |
+
input_shape=(batch_size, input_shape[-1]),
|
389 |
+
inputs_embeds=inputs_embeds,
|
390 |
+
past_key_values_length=past_length,
|
391 |
+
)
|
392 |
+
else:
|
393 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
394 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
395 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
396 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
397 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
398 |
+
attention_mask = attention_mask[:, None, None, :]
|
399 |
+
|
400 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
401 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
402 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
403 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
404 |
+
# effectively the same as removing these entirely.
|
405 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
406 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
407 |
+
|
408 |
+
if attention_mask is not None:
|
409 |
+
attention_mask = attention_mask.to(inputs_embeds.dtype)
|
410 |
+
|
411 |
+
hidden_states = self.language_model.transformer.drop(hidden_states)
|
412 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
413 |
+
|
414 |
+
presents = () if use_cache else None
|
415 |
+
all_self_attentions = () if output_attentions else None
|
416 |
+
all_hidden_states = () if output_hidden_states else None
|
417 |
+
for i, (block, layer_past) in enumerate(zip(self.language_model.transformer.h, past_key_values)):
|
418 |
+
if output_hidden_states:
|
419 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
420 |
+
outputs = block(
|
421 |
+
hidden_states,
|
422 |
+
layer_past=layer_past,
|
423 |
+
attention_mask=attention_mask,
|
424 |
+
use_cache=use_cache,
|
425 |
+
output_attentions=output_attentions,
|
426 |
+
)
|
427 |
+
hidden_states = outputs[0]
|
428 |
+
if use_cache is True:
|
429 |
+
presents = presents + (outputs[1],)
|
430 |
+
|
431 |
+
if output_attentions:
|
432 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
433 |
+
|
434 |
+
hidden_states = self.language_model.transformer.ln_f(hidden_states)
|
435 |
+
|
436 |
+
hidden_states = hidden_states.view(output_shape)
|
437 |
+
# Add last hidden state
|
438 |
+
if output_hidden_states:
|
439 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
440 |
+
|
441 |
+
logits = self.language_model.lm_head(hidden_states)
|
442 |
+
logits = logits.float()
|
443 |
+
loss = None
|
444 |
+
if labels is not None:
|
445 |
+
shift_logits = logits[..., :-1, :]
|
446 |
+
shift_labels = labels[..., 1:] # shift to right
|
447 |
+
if input_attention_mask is not None:
|
448 |
+
# we use the input attention mask to shift the logits and labels, because it is 2D.
|
449 |
+
shift_attention_mask = input_attention_mask[..., 1:]
|
450 |
+
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
|
451 |
+
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
|
452 |
+
else:
|
453 |
+
shift_logits = shift_logits.contiguous()
|
454 |
+
shift_labels = shift_labels.contiguous()
|
455 |
+
# Flatten the tokens
|
456 |
+
loss_fct = nn.CrossEntropyLoss()
|
457 |
+
|
458 |
+
flat_logits = shift_logits.view(-1, self.config.vocab_size)
|
459 |
+
flat_labels = shift_labels.view(-1).to(shift_logits.device)
|
460 |
+
loss = loss_fct(flat_logits, flat_labels)
|
461 |
+
if not return_dict:
|
462 |
+
output = (logits, presents, all_hidden_states, all_self_attentions)
|
463 |
+
return (loss,) + output if loss is not None else output
|
464 |
+
|
465 |
+
return TraVisionCausalLMOutputWithPast(
|
466 |
+
loss=loss,
|
467 |
+
logits=logits,
|
468 |
+
past_key_values=presents,
|
469 |
+
hidden_states=all_hidden_states,
|
470 |
+
attentions=all_self_attentions,
|
471 |
+
)
|
472 |
+
|
473 |
+
def prepare_inputs_for_generation(
|
474 |
+
self,
|
475 |
+
input_ids,
|
476 |
+
past_key_values=None,
|
477 |
+
inputs_embeds=None,
|
478 |
+
cache_position=None,
|
479 |
+
position_ids=None,
|
480 |
+
pixel_values=None,
|
481 |
+
attention_mask=None,
|
482 |
+
token_type_ids=None,
|
483 |
+
use_cache=True,
|
484 |
+
**kwargs,
|
485 |
+
):
|
486 |
+
# set position inds here: we are going to use absolute position embeddings, hence carefully track the locs of the past position embedding indices
|
487 |
+
if attention_mask is not None and position_ids is None:
|
488 |
+
if past_key_values:
|
489 |
+
position_ids_mask = (input_ids != self.config.image_token_index)
|
490 |
+
position_ids_mask[:, :-1] &= (input_ids[:, :-1] != self.config.text_config.pad_token_id)
|
491 |
+
last_index = position_ids_mask.sum(dim=1) - 1
|
492 |
+
position_ids = torch.stack([torch.arange(start, start+cache_position.shape[0], device=input_ids.device) for start in last_index])
|
493 |
+
|
494 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
495 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
496 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
497 |
+
if past_key_values is not None:
|
498 |
+
if inputs_embeds is not None: # Exception 1
|
499 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
500 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
501 |
+
input_ids = input_ids[:, cache_position]
|
502 |
+
|
503 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
504 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
505 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
506 |
+
else:
|
507 |
+
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
|
508 |
+
|
509 |
+
model_inputs.update(
|
510 |
+
{
|
511 |
+
"position_ids": position_ids,
|
512 |
+
"past_key_values": past_key_values,
|
513 |
+
"cache_position": cache_position,
|
514 |
+
"use_cache": use_cache,
|
515 |
+
"attention_mask": attention_mask,
|
516 |
+
"pixel_values": pixel_values,
|
517 |
+
"token_type_ids": token_type_ids,
|
518 |
+
}
|
519 |
+
)
|
520 |
+
return model_inputs
|