ucsahin commited on
Commit
1971a9d
1 Parent(s): 321c427

Upload TraVisionForCausalLM

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "TraVisionLM-DPO-v5/checkpoint-30000",
3
+ "architectures": [
4
+ "TraVisionForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_travisionlm.TraVisionLMConfig",
8
+ "AutoModelForCausalLM": "ucsahin/TraVisionLM-base--modeling_travisionlm.TraVisionForCausalLM"
9
+ },
10
+ "hidden_size": 1280,
11
+ "ignore_index": -100,
12
+ "image_token_index": 50257,
13
+ "model_type": "travisionlm",
14
+ "num_image_tokens": 256,
15
+ "projection_dim": 768,
16
+ "text_config": {
17
+ "architectures": [
18
+ "GPT2LMHeadModel"
19
+ ],
20
+ "bos_token_id": 0,
21
+ "eos_token_id": 0,
22
+ "model_type": "gpt2",
23
+ "n_ctx": 1024,
24
+ "n_embd": 1280,
25
+ "n_head": 20,
26
+ "n_layer": 36,
27
+ "pad_token_id": 0,
28
+ "reorder_and_upcast_attn": true,
29
+ "scale_attn_by_inverse_layer_idx": true,
30
+ "task_specific_params": {
31
+ "text-generation": {
32
+ "do_sample": true,
33
+ "max_length": 50
34
+ }
35
+ },
36
+ "torch_dtype": "float32",
37
+ "vocab_size": 51282
38
+ },
39
+ "torch_dtype": "float32",
40
+ "transformers_version": "4.45.0.dev0",
41
+ "vision_config": {
42
+ "image_size": 256,
43
+ "model_type": "siglip_vision_model",
44
+ "projection_dim": 768
45
+ }
46
+ }
configuration_travisionlm.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """TraVisionLM configuration"""
2
+
3
+ from transformers import PretrainedConfig
4
+ from transformers import logging, CONFIG_MAPPING
5
+ import warnings
6
+
7
+ logger = logging.get_logger(__name__)
8
+
9
+ class TraVisionLMConfig(PretrainedConfig):
10
+ model_type = "travisionlm"
11
+ is_composition = False
12
+
13
+ def __init__(
14
+ self,
15
+ vision_config=None,
16
+ text_config=None,
17
+ ignore_index=-100,
18
+ image_token_idx=50257,
19
+ vocab_size=51282,
20
+ projection_dim=768,
21
+ hidden_size=1280,
22
+ **kwargs,
23
+ ):
24
+ self.ignore_index = ignore_index
25
+ self.image_token_index = image_token_idx
26
+ self._vocab_size = vocab_size
27
+ self.projection_dim = projection_dim
28
+ self.hidden_size = hidden_size
29
+ self.vision_config = vision_config
30
+ self.is_encoder_decoder = False
31
+ if isinstance(self.vision_config, dict):
32
+ vision_config["model_type"] = (
33
+ vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model"
34
+ )
35
+ self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
36
+ elif vision_config is None:
37
+ self.vision_config = CONFIG_MAPPING["siglip_vision_model"](
38
+ attention_dropout=0.0,
39
+ hidden_act="gelu_pytorch_tanh",
40
+ hidden_size=768,
41
+ image_size=256,
42
+ intermediate_size=3072,
43
+ layer_norm_eps=1e-06,
44
+ num_attention_heads=12,
45
+ num_channels=3,
46
+ num_hidden_layers=12,
47
+ patch_size=16,
48
+ )
49
+ self.vocab_size = vocab_size
50
+
51
+ self.text_config = text_config
52
+
53
+ if isinstance(self.text_config, dict):
54
+ text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gpt2"
55
+ self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
56
+ elif text_config is None:
57
+ self.text_config = CONFIG_MAPPING["gpt2"](
58
+ activation_function="gelu_new",
59
+ attn_pdrop=0.1,
60
+ embd_pdrop=0.1,
61
+ initializer_range=0.02,
62
+ layer_norm_epsilon=1e-05,
63
+ n_ctx=1024,
64
+ n_embd=1280,
65
+ n_head=20,
66
+ n_layer=36,
67
+ n_positions=1024,
68
+ reorder_and_upcast_attn=False,
69
+ resid_pdrop=0.1,
70
+ scale_attn_by_inverse_layer_idx=False,
71
+ scale_attn_weights=True,
72
+ vocab_size=vocab_size
73
+ )
74
+ self.num_image_tokens = (self.vision_config.image_size // self.vision_config.patch_size) ** 2
75
+ self.pad_token_id = self.text_config.pad_token_id
76
+ self.vision_config.projection_dim = projection_dim
77
+ super().__init__(**kwargs)
78
+
79
+ @property
80
+ def vocab_size(self):
81
+ warnings.warn(
82
+ "The `vocab_size` attribute is deprecated and will be removed in v4.44, Please use `text_config.vocab_size` instead.",
83
+ FutureWarning,
84
+ )
85
+ return self._vocab_size
86
+
87
+ @vocab_size.setter
88
+ def vocab_size(self, value):
89
+ self._vocab_size = value
90
+
91
+ def to_dict(self):
92
+ output = super().to_dict()
93
+ output.pop("_vocab_size", None)
94
+ return output
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 0,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.45.0.dev0"
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a54e47ebd8800d323a53d233f499d6c260c3a11cbb6bd6f8bbd8e8bfb0cbe9e4
3
+ size 3498353344