tejaskamtam
commited on
Commit
•
b937976
1
Parent(s):
44b1319
End of training
Browse files- README.md +124 -0
- all_results.json +15 -0
- datasets/all_binary_and_xe_ey_fae_counterfactual/adapter_config.json +41 -0
- datasets/all_binary_and_xe_ey_fae_counterfactual/head_config.json +15 -0
- datasets/all_binary_and_xe_ey_fae_counterfactual/pytorch_adapter.bin +3 -0
- datasets/all_binary_and_xe_ey_fae_counterfactual/pytorch_model_head.bin +3 -0
- eval_results.json +10 -0
- train_results.json +8 -0
- trainer_state.json +780 -0
README.md
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/bart-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- datasets/all_binary_and_xe_ey_fae_counterfactual
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: bart-adapter-finetuned-xe_ey_fae
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Masked Language Modeling
|
15 |
+
type: fill-mask
|
16 |
+
dataset:
|
17 |
+
name: datasets/all_binary_and_xe_ey_fae_counterfactual
|
18 |
+
type: datasets/all_binary_and_xe_ey_fae_counterfactual
|
19 |
+
metrics:
|
20 |
+
- name: Accuracy
|
21 |
+
type: accuracy
|
22 |
+
value: 0.3096946377787028
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# bart-adapter-finetuned-xe_ey_fae
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the datasets/all_binary_and_xe_ey_fae_counterfactual dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 4.2302
|
33 |
+
- Accuracy: 0.3097
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 1e-05
|
53 |
+
- train_batch_size: 8
|
54 |
+
- eval_batch_size: 8
|
55 |
+
- seed: 100
|
56 |
+
- gradient_accumulation_steps: 2
|
57 |
+
- total_train_batch_size: 16
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 3.0
|
61 |
+
- mixed_precision_training: Native AMP
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
67 |
+
| 7.6974 | 0.06 | 500 | 6.7246 | 0.0649 |
|
68 |
+
| 6.8017 | 0.12 | 1000 | 6.4067 | 0.0762 |
|
69 |
+
| 6.5894 | 0.18 | 1500 | 6.2661 | 0.0821 |
|
70 |
+
| 6.443 | 0.24 | 2000 | 6.1350 | 0.0905 |
|
71 |
+
| 6.3245 | 0.3 | 2500 | 6.0024 | 0.1008 |
|
72 |
+
| 6.2208 | 0.35 | 3000 | 5.8518 | 0.1145 |
|
73 |
+
| 6.097 | 0.41 | 3500 | 5.6588 | 0.1330 |
|
74 |
+
| 5.9862 | 0.47 | 4000 | 5.4641 | 0.1543 |
|
75 |
+
| 5.8742 | 0.53 | 4500 | 5.3200 | 0.1707 |
|
76 |
+
| 5.7716 | 0.59 | 5000 | 5.2044 | 0.1840 |
|
77 |
+
| 5.6952 | 0.65 | 5500 | 5.1154 | 0.1952 |
|
78 |
+
| 5.6209 | 0.71 | 6000 | 5.0428 | 0.2044 |
|
79 |
+
| 5.5752 | 0.77 | 6500 | 4.9711 | 0.2136 |
|
80 |
+
| 5.5091 | 0.83 | 7000 | 4.9078 | 0.2212 |
|
81 |
+
| 5.4657 | 0.89 | 7500 | 4.8495 | 0.2287 |
|
82 |
+
| 5.4245 | 0.95 | 8000 | 4.8012 | 0.2360 |
|
83 |
+
| 5.3813 | 1.0 | 8500 | 4.7563 | 0.2409 |
|
84 |
+
| 5.3501 | 1.06 | 9000 | 4.7166 | 0.2464 |
|
85 |
+
| 5.3098 | 1.12 | 9500 | 4.6838 | 0.2501 |
|
86 |
+
| 5.2856 | 1.18 | 10000 | 4.6515 | 0.2551 |
|
87 |
+
| 5.2549 | 1.24 | 10500 | 4.6121 | 0.2602 |
|
88 |
+
| 5.2217 | 1.3 | 11000 | 4.5841 | 0.2637 |
|
89 |
+
| 5.1997 | 1.36 | 11500 | 4.5588 | 0.2674 |
|
90 |
+
| 5.1844 | 1.42 | 12000 | 4.5309 | 0.2708 |
|
91 |
+
| 5.1491 | 1.48 | 12500 | 4.4999 | 0.2748 |
|
92 |
+
| 5.1244 | 1.54 | 13000 | 4.4783 | 0.2780 |
|
93 |
+
| 5.1047 | 1.6 | 13500 | 4.4561 | 0.2812 |
|
94 |
+
| 5.0917 | 1.66 | 14000 | 4.4409 | 0.2826 |
|
95 |
+
| 5.0631 | 1.71 | 14500 | 4.4198 | 0.2851 |
|
96 |
+
| 5.0537 | 1.77 | 15000 | 4.4003 | 0.2881 |
|
97 |
+
| 5.0339 | 1.83 | 15500 | 4.3855 | 0.2899 |
|
98 |
+
| 5.0235 | 1.89 | 16000 | 4.3650 | 0.2921 |
|
99 |
+
| 5.0074 | 1.95 | 16500 | 4.3496 | 0.2942 |
|
100 |
+
| 4.9927 | 2.01 | 17000 | 4.3361 | 0.2965 |
|
101 |
+
| 4.9797 | 2.07 | 17500 | 4.3203 | 0.2981 |
|
102 |
+
| 4.9725 | 2.13 | 18000 | 4.3118 | 0.2995 |
|
103 |
+
| 4.9552 | 2.19 | 18500 | 4.2977 | 0.3012 |
|
104 |
+
| 4.956 | 2.25 | 19000 | 4.2894 | 0.3019 |
|
105 |
+
| 4.9427 | 2.31 | 19500 | 4.2781 | 0.3036 |
|
106 |
+
| 4.9337 | 2.36 | 20000 | 4.2773 | 0.3038 |
|
107 |
+
| 4.9333 | 2.42 | 20500 | 4.2624 | 0.3056 |
|
108 |
+
| 4.9173 | 2.48 | 21000 | 4.2643 | 0.3059 |
|
109 |
+
| 4.915 | 2.54 | 21500 | 4.2537 | 0.3069 |
|
110 |
+
| 4.9092 | 2.6 | 22000 | 4.2457 | 0.3084 |
|
111 |
+
| 4.9043 | 2.66 | 22500 | 4.2456 | 0.3081 |
|
112 |
+
| 4.9014 | 2.72 | 23000 | 4.2424 | 0.3087 |
|
113 |
+
| 4.8889 | 2.78 | 23500 | 4.2347 | 0.3104 |
|
114 |
+
| 4.8898 | 2.84 | 24000 | 4.2340 | 0.3095 |
|
115 |
+
| 4.8814 | 2.9 | 24500 | 4.2297 | 0.3100 |
|
116 |
+
| 4.8804 | 2.96 | 25000 | 4.2290 | 0.3095 |
|
117 |
+
|
118 |
+
|
119 |
+
### Framework versions
|
120 |
+
|
121 |
+
- Transformers 4.36.2
|
122 |
+
- Pytorch 2.2.0+cu121
|
123 |
+
- Datasets 2.17.0
|
124 |
+
- Tokenizers 0.15.2
|
all_results.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.3096946377787028,
|
4 |
+
"eval_loss": 4.230222225189209,
|
5 |
+
"eval_runtime": 94.6692,
|
6 |
+
"eval_samples": 16928,
|
7 |
+
"eval_samples_per_second": 178.812,
|
8 |
+
"eval_steps_per_second": 22.352,
|
9 |
+
"perplexity": 68.73250457066099,
|
10 |
+
"train_loss": 5.366477503620405,
|
11 |
+
"train_runtime": 9239.2947,
|
12 |
+
"train_samples": 135339,
|
13 |
+
"train_samples_per_second": 43.945,
|
14 |
+
"train_steps_per_second": 2.747
|
15 |
+
}
|
datasets/all_binary_and_xe_ey_fae_counterfactual/adapter_config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"adapter_residual_before_ln": false,
|
4 |
+
"cross_adapter": false,
|
5 |
+
"factorized_phm_W": true,
|
6 |
+
"factorized_phm_rule": false,
|
7 |
+
"hypercomplex_nonlinearity": "glorot-uniform",
|
8 |
+
"init_weights": "bert",
|
9 |
+
"inv_adapter": null,
|
10 |
+
"inv_adapter_reduction_factor": null,
|
11 |
+
"is_parallel": false,
|
12 |
+
"learn_phm": true,
|
13 |
+
"leave_out": [],
|
14 |
+
"ln_after": false,
|
15 |
+
"ln_before": false,
|
16 |
+
"mh_adapter": false,
|
17 |
+
"non_linearity": "relu",
|
18 |
+
"original_ln_after": true,
|
19 |
+
"original_ln_before": true,
|
20 |
+
"output_adapter": true,
|
21 |
+
"phm_bias": true,
|
22 |
+
"phm_c_init": "normal",
|
23 |
+
"phm_dim": 4,
|
24 |
+
"phm_init_range": 0.0001,
|
25 |
+
"phm_layer": false,
|
26 |
+
"phm_rank": 1,
|
27 |
+
"reduction_factor": 16,
|
28 |
+
"residual_before_ln": true,
|
29 |
+
"scaling": 1.0,
|
30 |
+
"shared_W_phm": false,
|
31 |
+
"shared_phm_rule": true,
|
32 |
+
"use_gating": false
|
33 |
+
},
|
34 |
+
"config_id": "9076f36a74755ac4",
|
35 |
+
"hidden_size": 768,
|
36 |
+
"model_class": "BartForConditionalGeneration",
|
37 |
+
"model_name": "facebook/bart-base",
|
38 |
+
"model_type": "bart",
|
39 |
+
"name": "datasets/all_binary_and_xe_ey_fae_counterfactual",
|
40 |
+
"version": "0.1.2"
|
41 |
+
}
|
datasets/all_binary_and_xe_ey_fae_counterfactual/head_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": null,
|
3 |
+
"hidden_size": 768,
|
4 |
+
"label2id": {
|
5 |
+
"LABEL_0": 0,
|
6 |
+
"LABEL_1": 1,
|
7 |
+
"LABEL_2": 2
|
8 |
+
},
|
9 |
+
"model_class": "BartForConditionalGeneration",
|
10 |
+
"model_name": "facebook/bart-base",
|
11 |
+
"model_type": "bart",
|
12 |
+
"name": null,
|
13 |
+
"num_labels": 3,
|
14 |
+
"version": "0.1.2"
|
15 |
+
}
|
datasets/all_binary_and_xe_ey_fae_counterfactual/pytorch_adapter.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd537533b0c653bcf2b6e451ff533e956883139d3cee87e3f2b00be4c8b6c9dd
|
3 |
+
size 3598054
|
datasets/all_binary_and_xe_ey_fae_counterfactual/pytorch_model_head.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbca71e86a3e2c371d8bf759d9ee58c7ad16e830743ef402deeebf64852dd8eb
|
3 |
+
size 154616666
|
eval_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.3096946377787028,
|
4 |
+
"eval_loss": 4.230222225189209,
|
5 |
+
"eval_runtime": 94.6692,
|
6 |
+
"eval_samples": 16928,
|
7 |
+
"eval_samples_per_second": 178.812,
|
8 |
+
"eval_steps_per_second": 22.352,
|
9 |
+
"perplexity": 68.73250457066099
|
10 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"train_loss": 5.366477503620405,
|
4 |
+
"train_runtime": 9239.2947,
|
5 |
+
"train_samples": 135339,
|
6 |
+
"train_samples_per_second": 43.945,
|
7 |
+
"train_steps_per_second": 2.747
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,780 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 4.228977203369141,
|
3 |
+
"best_model_checkpoint": "finetuning/output/bart-adapter-finetuned_xe_ey_fae/checkpoint-25000",
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 25377,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.06,
|
13 |
+
"learning_rate": 9.804547424833511e-06,
|
14 |
+
"loss": 7.6974,
|
15 |
+
"step": 500
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.06,
|
19 |
+
"eval_accuracy": 0.06490582319808594,
|
20 |
+
"eval_loss": 6.724620819091797,
|
21 |
+
"eval_runtime": 94.6343,
|
22 |
+
"eval_samples_per_second": 178.878,
|
23 |
+
"eval_steps_per_second": 22.36,
|
24 |
+
"step": 500
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.12,
|
28 |
+
"learning_rate": 9.607912676833355e-06,
|
29 |
+
"loss": 6.8017,
|
30 |
+
"step": 1000
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.12,
|
34 |
+
"eval_accuracy": 0.07624003920813896,
|
35 |
+
"eval_loss": 6.406736373901367,
|
36 |
+
"eval_runtime": 94.6629,
|
37 |
+
"eval_samples_per_second": 178.824,
|
38 |
+
"eval_steps_per_second": 22.353,
|
39 |
+
"step": 1000
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.18,
|
43 |
+
"learning_rate": 9.410883871221972e-06,
|
44 |
+
"loss": 6.5894,
|
45 |
+
"step": 1500
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.18,
|
49 |
+
"eval_accuracy": 0.08208813335328147,
|
50 |
+
"eval_loss": 6.266135215759277,
|
51 |
+
"eval_runtime": 94.5601,
|
52 |
+
"eval_samples_per_second": 179.019,
|
53 |
+
"eval_steps_per_second": 22.377,
|
54 |
+
"step": 1500
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.24,
|
58 |
+
"learning_rate": 9.213855065610593e-06,
|
59 |
+
"loss": 6.443,
|
60 |
+
"step": 2000
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"epoch": 0.24,
|
64 |
+
"eval_accuracy": 0.09051518335536303,
|
65 |
+
"eval_loss": 6.134974002838135,
|
66 |
+
"eval_runtime": 94.5786,
|
67 |
+
"eval_samples_per_second": 178.983,
|
68 |
+
"eval_steps_per_second": 22.373,
|
69 |
+
"step": 2000
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.3,
|
73 |
+
"learning_rate": 9.016826259999214e-06,
|
74 |
+
"loss": 6.3245,
|
75 |
+
"step": 2500
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.3,
|
79 |
+
"eval_accuracy": 0.10075202490707738,
|
80 |
+
"eval_loss": 6.002374172210693,
|
81 |
+
"eval_runtime": 94.5343,
|
82 |
+
"eval_samples_per_second": 179.067,
|
83 |
+
"eval_steps_per_second": 22.383,
|
84 |
+
"step": 2500
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.35,
|
88 |
+
"learning_rate": 8.819797454387831e-06,
|
89 |
+
"loss": 6.2208,
|
90 |
+
"step": 3000
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 0.35,
|
94 |
+
"eval_accuracy": 0.11453583223288173,
|
95 |
+
"eval_loss": 5.851789474487305,
|
96 |
+
"eval_runtime": 94.517,
|
97 |
+
"eval_samples_per_second": 179.1,
|
98 |
+
"eval_steps_per_second": 22.388,
|
99 |
+
"step": 3000
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.41,
|
103 |
+
"learning_rate": 8.622768648776452e-06,
|
104 |
+
"loss": 6.097,
|
105 |
+
"step": 3500
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.41,
|
109 |
+
"eval_accuracy": 0.13295434177816914,
|
110 |
+
"eval_loss": 5.658839225769043,
|
111 |
+
"eval_runtime": 94.5475,
|
112 |
+
"eval_samples_per_second": 179.042,
|
113 |
+
"eval_steps_per_second": 22.38,
|
114 |
+
"step": 3500
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.47,
|
118 |
+
"learning_rate": 8.425739843165071e-06,
|
119 |
+
"loss": 5.9862,
|
120 |
+
"step": 4000
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"epoch": 0.47,
|
124 |
+
"eval_accuracy": 0.15434364158992747,
|
125 |
+
"eval_loss": 5.464097023010254,
|
126 |
+
"eval_runtime": 94.6204,
|
127 |
+
"eval_samples_per_second": 178.904,
|
128 |
+
"eval_steps_per_second": 22.363,
|
129 |
+
"step": 4000
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.53,
|
133 |
+
"learning_rate": 8.22871103755369e-06,
|
134 |
+
"loss": 5.8742,
|
135 |
+
"step": 4500
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.53,
|
139 |
+
"eval_accuracy": 0.17065464547534417,
|
140 |
+
"eval_loss": 5.319990158081055,
|
141 |
+
"eval_runtime": 94.6537,
|
142 |
+
"eval_samples_per_second": 178.841,
|
143 |
+
"eval_steps_per_second": 22.355,
|
144 |
+
"step": 4500
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.59,
|
148 |
+
"learning_rate": 8.03168223194231e-06,
|
149 |
+
"loss": 5.7716,
|
150 |
+
"step": 5000
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.59,
|
154 |
+
"eval_accuracy": 0.1840178168169571,
|
155 |
+
"eval_loss": 5.204446315765381,
|
156 |
+
"eval_runtime": 94.6335,
|
157 |
+
"eval_samples_per_second": 178.879,
|
158 |
+
"eval_steps_per_second": 22.36,
|
159 |
+
"step": 5000
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.65,
|
163 |
+
"learning_rate": 7.83465342633093e-06,
|
164 |
+
"loss": 5.6952,
|
165 |
+
"step": 5500
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.65,
|
169 |
+
"eval_accuracy": 0.19522825907475083,
|
170 |
+
"eval_loss": 5.11543607711792,
|
171 |
+
"eval_runtime": 94.6161,
|
172 |
+
"eval_samples_per_second": 178.913,
|
173 |
+
"eval_steps_per_second": 22.364,
|
174 |
+
"step": 5500
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 0.71,
|
178 |
+
"learning_rate": 7.63762462071955e-06,
|
179 |
+
"loss": 5.6209,
|
180 |
+
"step": 6000
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 0.71,
|
184 |
+
"eval_accuracy": 0.20442877856808384,
|
185 |
+
"eval_loss": 5.042799949645996,
|
186 |
+
"eval_runtime": 94.6498,
|
187 |
+
"eval_samples_per_second": 178.849,
|
188 |
+
"eval_steps_per_second": 22.356,
|
189 |
+
"step": 6000
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.77,
|
193 |
+
"learning_rate": 7.440595815108169e-06,
|
194 |
+
"loss": 5.5752,
|
195 |
+
"step": 6500
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.77,
|
199 |
+
"eval_accuracy": 0.21356098820506358,
|
200 |
+
"eval_loss": 4.97105598449707,
|
201 |
+
"eval_runtime": 94.647,
|
202 |
+
"eval_samples_per_second": 178.854,
|
203 |
+
"eval_steps_per_second": 22.357,
|
204 |
+
"step": 6500
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 0.83,
|
208 |
+
"learning_rate": 7.2435670094967895e-06,
|
209 |
+
"loss": 5.5091,
|
210 |
+
"step": 7000
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"epoch": 0.83,
|
214 |
+
"eval_accuracy": 0.2211917808858752,
|
215 |
+
"eval_loss": 4.907817363739014,
|
216 |
+
"eval_runtime": 94.6132,
|
217 |
+
"eval_samples_per_second": 178.918,
|
218 |
+
"eval_steps_per_second": 22.365,
|
219 |
+
"step": 7000
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.89,
|
223 |
+
"learning_rate": 7.0465382038854095e-06,
|
224 |
+
"loss": 5.4657,
|
225 |
+
"step": 7500
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.89,
|
229 |
+
"eval_accuracy": 0.22866674452100122,
|
230 |
+
"eval_loss": 4.849499225616455,
|
231 |
+
"eval_runtime": 94.6751,
|
232 |
+
"eval_samples_per_second": 178.801,
|
233 |
+
"eval_steps_per_second": 22.35,
|
234 |
+
"step": 7500
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.95,
|
238 |
+
"learning_rate": 6.849509398274028e-06,
|
239 |
+
"loss": 5.4245,
|
240 |
+
"step": 8000
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.95,
|
244 |
+
"eval_accuracy": 0.2359544531397667,
|
245 |
+
"eval_loss": 4.801201343536377,
|
246 |
+
"eval_runtime": 94.5944,
|
247 |
+
"eval_samples_per_second": 178.954,
|
248 |
+
"eval_steps_per_second": 22.369,
|
249 |
+
"step": 8000
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 1.0,
|
253 |
+
"learning_rate": 6.652480592662648e-06,
|
254 |
+
"loss": 5.3813,
|
255 |
+
"step": 8500
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 1.0,
|
259 |
+
"eval_accuracy": 0.24091048075194954,
|
260 |
+
"eval_loss": 4.756309986114502,
|
261 |
+
"eval_runtime": 94.6708,
|
262 |
+
"eval_samples_per_second": 178.809,
|
263 |
+
"eval_steps_per_second": 22.351,
|
264 |
+
"step": 8500
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 1.06,
|
268 |
+
"learning_rate": 6.4554517870512675e-06,
|
269 |
+
"loss": 5.3501,
|
270 |
+
"step": 9000
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 1.06,
|
274 |
+
"eval_accuracy": 0.24637192061403781,
|
275 |
+
"eval_loss": 4.716611862182617,
|
276 |
+
"eval_runtime": 94.6539,
|
277 |
+
"eval_samples_per_second": 178.841,
|
278 |
+
"eval_steps_per_second": 22.355,
|
279 |
+
"step": 9000
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 1.12,
|
283 |
+
"learning_rate": 6.2584229814398866e-06,
|
284 |
+
"loss": 5.3098,
|
285 |
+
"step": 9500
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 1.12,
|
289 |
+
"eval_accuracy": 0.2501098972917417,
|
290 |
+
"eval_loss": 4.683783054351807,
|
291 |
+
"eval_runtime": 94.7201,
|
292 |
+
"eval_samples_per_second": 178.716,
|
293 |
+
"eval_steps_per_second": 22.339,
|
294 |
+
"step": 9500
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 1.18,
|
298 |
+
"learning_rate": 6.0613941758285065e-06,
|
299 |
+
"loss": 5.2856,
|
300 |
+
"step": 10000
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"epoch": 1.18,
|
304 |
+
"eval_accuracy": 0.2551260313174862,
|
305 |
+
"eval_loss": 4.651512622833252,
|
306 |
+
"eval_runtime": 94.7148,
|
307 |
+
"eval_samples_per_second": 178.726,
|
308 |
+
"eval_steps_per_second": 22.341,
|
309 |
+
"step": 10000
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 1.24,
|
313 |
+
"learning_rate": 5.864365370217126e-06,
|
314 |
+
"loss": 5.2549,
|
315 |
+
"step": 10500
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 1.24,
|
319 |
+
"eval_accuracy": 0.2601890994584574,
|
320 |
+
"eval_loss": 4.612128257751465,
|
321 |
+
"eval_runtime": 94.6453,
|
322 |
+
"eval_samples_per_second": 178.857,
|
323 |
+
"eval_steps_per_second": 22.357,
|
324 |
+
"step": 10500
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 1.3,
|
328 |
+
"learning_rate": 5.6673365646057455e-06,
|
329 |
+
"loss": 5.2217,
|
330 |
+
"step": 11000
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"epoch": 1.3,
|
334 |
+
"eval_accuracy": 0.2636951256551434,
|
335 |
+
"eval_loss": 4.5841240882873535,
|
336 |
+
"eval_runtime": 94.6678,
|
337 |
+
"eval_samples_per_second": 178.815,
|
338 |
+
"eval_steps_per_second": 22.352,
|
339 |
+
"step": 11000
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 1.36,
|
343 |
+
"learning_rate": 5.470701816605588e-06,
|
344 |
+
"loss": 5.1997,
|
345 |
+
"step": 11500
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 1.36,
|
349 |
+
"eval_accuracy": 0.267359922045739,
|
350 |
+
"eval_loss": 4.558795928955078,
|
351 |
+
"eval_runtime": 94.6574,
|
352 |
+
"eval_samples_per_second": 178.834,
|
353 |
+
"eval_steps_per_second": 22.354,
|
354 |
+
"step": 11500
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 1.42,
|
358 |
+
"learning_rate": 5.273673010994208e-06,
|
359 |
+
"loss": 5.1844,
|
360 |
+
"step": 12000
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 1.42,
|
364 |
+
"eval_accuracy": 0.27077985002194555,
|
365 |
+
"eval_loss": 4.530928611755371,
|
366 |
+
"eval_runtime": 94.6472,
|
367 |
+
"eval_samples_per_second": 178.854,
|
368 |
+
"eval_steps_per_second": 22.357,
|
369 |
+
"step": 12000
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 1.48,
|
373 |
+
"learning_rate": 5.076644205382827e-06,
|
374 |
+
"loss": 5.1491,
|
375 |
+
"step": 12500
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 1.48,
|
379 |
+
"eval_accuracy": 0.27483096084023484,
|
380 |
+
"eval_loss": 4.499913692474365,
|
381 |
+
"eval_runtime": 94.5904,
|
382 |
+
"eval_samples_per_second": 178.961,
|
383 |
+
"eval_steps_per_second": 22.37,
|
384 |
+
"step": 12500
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 1.54,
|
388 |
+
"learning_rate": 4.879615399771447e-06,
|
389 |
+
"loss": 5.1244,
|
390 |
+
"step": 13000
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 1.54,
|
394 |
+
"eval_accuracy": 0.27797822970103025,
|
395 |
+
"eval_loss": 4.47827672958374,
|
396 |
+
"eval_runtime": 94.6192,
|
397 |
+
"eval_samples_per_second": 178.907,
|
398 |
+
"eval_steps_per_second": 22.363,
|
399 |
+
"step": 13000
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 1.6,
|
403 |
+
"learning_rate": 4.6825865941600665e-06,
|
404 |
+
"loss": 5.1047,
|
405 |
+
"step": 13500
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 1.6,
|
409 |
+
"eval_accuracy": 0.28116894803558673,
|
410 |
+
"eval_loss": 4.456052780151367,
|
411 |
+
"eval_runtime": 94.6508,
|
412 |
+
"eval_samples_per_second": 178.847,
|
413 |
+
"eval_steps_per_second": 22.356,
|
414 |
+
"step": 13500
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 1.66,
|
418 |
+
"learning_rate": 4.485557788548686e-06,
|
419 |
+
"loss": 5.0917,
|
420 |
+
"step": 14000
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"epoch": 1.66,
|
424 |
+
"eval_accuracy": 0.28257652944074685,
|
425 |
+
"eval_loss": 4.440920352935791,
|
426 |
+
"eval_runtime": 94.6448,
|
427 |
+
"eval_samples_per_second": 178.858,
|
428 |
+
"eval_steps_per_second": 22.357,
|
429 |
+
"step": 14000
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 1.71,
|
433 |
+
"learning_rate": 4.2885289829373055e-06,
|
434 |
+
"loss": 5.0631,
|
435 |
+
"step": 14500
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 1.71,
|
439 |
+
"eval_accuracy": 0.2851284480287185,
|
440 |
+
"eval_loss": 4.4198174476623535,
|
441 |
+
"eval_runtime": 94.6157,
|
442 |
+
"eval_samples_per_second": 178.913,
|
443 |
+
"eval_steps_per_second": 22.364,
|
444 |
+
"step": 14500
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 1.77,
|
448 |
+
"learning_rate": 4.091500177325925e-06,
|
449 |
+
"loss": 5.0537,
|
450 |
+
"step": 15000
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 1.77,
|
454 |
+
"eval_accuracy": 0.2881034378022738,
|
455 |
+
"eval_loss": 4.400303840637207,
|
456 |
+
"eval_runtime": 94.6637,
|
457 |
+
"eval_samples_per_second": 178.823,
|
458 |
+
"eval_steps_per_second": 22.353,
|
459 |
+
"step": 15000
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 1.83,
|
463 |
+
"learning_rate": 3.894865429325768e-06,
|
464 |
+
"loss": 5.0339,
|
465 |
+
"step": 15500
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 1.83,
|
469 |
+
"eval_accuracy": 0.2898631699682636,
|
470 |
+
"eval_loss": 4.385478973388672,
|
471 |
+
"eval_runtime": 94.7914,
|
472 |
+
"eval_samples_per_second": 178.582,
|
473 |
+
"eval_steps_per_second": 22.323,
|
474 |
+
"step": 15500
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 1.89,
|
478 |
+
"learning_rate": 3.6978366237143875e-06,
|
479 |
+
"loss": 5.0235,
|
480 |
+
"step": 16000
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 1.89,
|
484 |
+
"eval_accuracy": 0.29213215439190976,
|
485 |
+
"eval_loss": 4.3650221824646,
|
486 |
+
"eval_runtime": 94.7339,
|
487 |
+
"eval_samples_per_second": 178.69,
|
488 |
+
"eval_steps_per_second": 22.336,
|
489 |
+
"step": 16000
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 1.95,
|
493 |
+
"learning_rate": 3.500807818103007e-06,
|
494 |
+
"loss": 5.0074,
|
495 |
+
"step": 16500
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 1.95,
|
499 |
+
"eval_accuracy": 0.2941743633357399,
|
500 |
+
"eval_loss": 4.349618911743164,
|
501 |
+
"eval_runtime": 94.7186,
|
502 |
+
"eval_samples_per_second": 178.719,
|
503 |
+
"eval_steps_per_second": 22.34,
|
504 |
+
"step": 16500
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 2.01,
|
508 |
+
"learning_rate": 3.304173070102849e-06,
|
509 |
+
"loss": 4.9927,
|
510 |
+
"step": 17000
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"epoch": 2.01,
|
514 |
+
"eval_accuracy": 0.2964732381378149,
|
515 |
+
"eval_loss": 4.336081027984619,
|
516 |
+
"eval_runtime": 94.7044,
|
517 |
+
"eval_samples_per_second": 178.746,
|
518 |
+
"eval_steps_per_second": 22.343,
|
519 |
+
"step": 17000
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 2.07,
|
523 |
+
"learning_rate": 3.107144264491469e-06,
|
524 |
+
"loss": 4.9797,
|
525 |
+
"step": 17500
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 2.07,
|
529 |
+
"eval_accuracy": 0.2981180855432632,
|
530 |
+
"eval_loss": 4.320304870605469,
|
531 |
+
"eval_runtime": 94.752,
|
532 |
+
"eval_samples_per_second": 178.656,
|
533 |
+
"eval_steps_per_second": 22.332,
|
534 |
+
"step": 17500
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 2.13,
|
538 |
+
"learning_rate": 2.9101154588800883e-06,
|
539 |
+
"loss": 4.9725,
|
540 |
+
"step": 18000
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"epoch": 2.13,
|
544 |
+
"eval_accuracy": 0.2994866192996549,
|
545 |
+
"eval_loss": 4.311823844909668,
|
546 |
+
"eval_runtime": 94.7748,
|
547 |
+
"eval_samples_per_second": 178.613,
|
548 |
+
"eval_steps_per_second": 22.327,
|
549 |
+
"step": 18000
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 2.19,
|
553 |
+
"learning_rate": 2.713086653268708e-06,
|
554 |
+
"loss": 4.9552,
|
555 |
+
"step": 18500
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 2.19,
|
559 |
+
"eval_accuracy": 0.3011751340054841,
|
560 |
+
"eval_loss": 4.297677516937256,
|
561 |
+
"eval_runtime": 94.6902,
|
562 |
+
"eval_samples_per_second": 178.772,
|
563 |
+
"eval_steps_per_second": 22.347,
|
564 |
+
"step": 18500
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 2.25,
|
568 |
+
"learning_rate": 2.5160578476573277e-06,
|
569 |
+
"loss": 4.956,
|
570 |
+
"step": 19000
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 2.25,
|
574 |
+
"eval_accuracy": 0.3018521891702124,
|
575 |
+
"eval_loss": 4.289434909820557,
|
576 |
+
"eval_runtime": 94.6916,
|
577 |
+
"eval_samples_per_second": 178.77,
|
578 |
+
"eval_steps_per_second": 22.346,
|
579 |
+
"step": 19000
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 2.31,
|
583 |
+
"learning_rate": 2.3190290420459476e-06,
|
584 |
+
"loss": 4.9427,
|
585 |
+
"step": 19500
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 2.31,
|
589 |
+
"eval_accuracy": 0.30359935941560284,
|
590 |
+
"eval_loss": 4.278063774108887,
|
591 |
+
"eval_runtime": 94.7241,
|
592 |
+
"eval_samples_per_second": 178.709,
|
593 |
+
"eval_steps_per_second": 22.339,
|
594 |
+
"step": 19500
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 2.36,
|
598 |
+
"learning_rate": 2.12239429404579e-06,
|
599 |
+
"loss": 4.9337,
|
600 |
+
"step": 20000
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 2.36,
|
604 |
+
"eval_accuracy": 0.30382226071056156,
|
605 |
+
"eval_loss": 4.277279853820801,
|
606 |
+
"eval_runtime": 94.6289,
|
607 |
+
"eval_samples_per_second": 178.888,
|
608 |
+
"eval_steps_per_second": 22.361,
|
609 |
+
"step": 20000
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 2.42,
|
613 |
+
"learning_rate": 1.9253654884344093e-06,
|
614 |
+
"loss": 4.9333,
|
615 |
+
"step": 20500
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 2.42,
|
619 |
+
"eval_accuracy": 0.305628714892609,
|
620 |
+
"eval_loss": 4.262350559234619,
|
621 |
+
"eval_runtime": 94.5958,
|
622 |
+
"eval_samples_per_second": 178.951,
|
623 |
+
"eval_steps_per_second": 22.369,
|
624 |
+
"step": 20500
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 2.48,
|
628 |
+
"learning_rate": 1.7283366828230288e-06,
|
629 |
+
"loss": 4.9173,
|
630 |
+
"step": 21000
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"epoch": 2.48,
|
634 |
+
"eval_accuracy": 0.30594861364613246,
|
635 |
+
"eval_loss": 4.26426887512207,
|
636 |
+
"eval_runtime": 94.6851,
|
637 |
+
"eval_samples_per_second": 178.782,
|
638 |
+
"eval_steps_per_second": 22.348,
|
639 |
+
"step": 21000
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 2.54,
|
643 |
+
"learning_rate": 1.5313078772116485e-06,
|
644 |
+
"loss": 4.915,
|
645 |
+
"step": 21500
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 2.54,
|
649 |
+
"eval_accuracy": 0.3068805715197335,
|
650 |
+
"eval_loss": 4.253678321838379,
|
651 |
+
"eval_runtime": 94.5821,
|
652 |
+
"eval_samples_per_second": 178.977,
|
653 |
+
"eval_steps_per_second": 22.372,
|
654 |
+
"step": 21500
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 2.6,
|
658 |
+
"learning_rate": 1.3342790716002682e-06,
|
659 |
+
"loss": 4.9092,
|
660 |
+
"step": 22000
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 2.6,
|
664 |
+
"eval_accuracy": 0.30841780910899225,
|
665 |
+
"eval_loss": 4.245660781860352,
|
666 |
+
"eval_runtime": 94.6548,
|
667 |
+
"eval_samples_per_second": 178.839,
|
668 |
+
"eval_steps_per_second": 22.355,
|
669 |
+
"step": 22000
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 2.66,
|
673 |
+
"learning_rate": 1.1372502659888877e-06,
|
674 |
+
"loss": 4.9043,
|
675 |
+
"step": 22500
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 2.66,
|
679 |
+
"eval_accuracy": 0.3080689795368392,
|
680 |
+
"eval_loss": 4.245626926422119,
|
681 |
+
"eval_runtime": 94.7104,
|
682 |
+
"eval_samples_per_second": 178.734,
|
683 |
+
"eval_steps_per_second": 22.342,
|
684 |
+
"step": 22500
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 2.72,
|
688 |
+
"learning_rate": 9.402214603775073e-07,
|
689 |
+
"loss": 4.9014,
|
690 |
+
"step": 23000
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 2.72,
|
694 |
+
"eval_accuracy": 0.3087008130169778,
|
695 |
+
"eval_loss": 4.24239444732666,
|
696 |
+
"eval_runtime": 94.6532,
|
697 |
+
"eval_samples_per_second": 178.842,
|
698 |
+
"eval_steps_per_second": 22.355,
|
699 |
+
"step": 23000
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 2.78,
|
703 |
+
"learning_rate": 7.431926547661269e-07,
|
704 |
+
"loss": 4.8889,
|
705 |
+
"step": 23500
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 2.78,
|
709 |
+
"eval_accuracy": 0.3103718452365669,
|
710 |
+
"eval_loss": 4.2347259521484375,
|
711 |
+
"eval_runtime": 94.6443,
|
712 |
+
"eval_samples_per_second": 178.859,
|
713 |
+
"eval_steps_per_second": 22.357,
|
714 |
+
"step": 23500
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 2.84,
|
718 |
+
"learning_rate": 5.461638491547465e-07,
|
719 |
+
"loss": 4.8898,
|
720 |
+
"step": 24000
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"epoch": 2.84,
|
724 |
+
"eval_accuracy": 0.30947218110795954,
|
725 |
+
"eval_loss": 4.233951091766357,
|
726 |
+
"eval_runtime": 94.5592,
|
727 |
+
"eval_samples_per_second": 179.02,
|
728 |
+
"eval_steps_per_second": 22.378,
|
729 |
+
"step": 24000
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 2.9,
|
733 |
+
"learning_rate": 3.4952910115458886e-07,
|
734 |
+
"loss": 4.8814,
|
735 |
+
"step": 24500
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 2.9,
|
739 |
+
"eval_accuracy": 0.31004912351666813,
|
740 |
+
"eval_loss": 4.2296977043151855,
|
741 |
+
"eval_runtime": 94.6234,
|
742 |
+
"eval_samples_per_second": 178.899,
|
743 |
+
"eval_steps_per_second": 22.362,
|
744 |
+
"step": 24500
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 2.96,
|
748 |
+
"learning_rate": 1.5250029554320843e-07,
|
749 |
+
"loss": 4.8804,
|
750 |
+
"step": 25000
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"epoch": 2.96,
|
754 |
+
"eval_accuracy": 0.3095025688930406,
|
755 |
+
"eval_loss": 4.228977203369141,
|
756 |
+
"eval_runtime": 94.5894,
|
757 |
+
"eval_samples_per_second": 178.963,
|
758 |
+
"eval_steps_per_second": 22.37,
|
759 |
+
"step": 25000
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 3.0,
|
763 |
+
"step": 25377,
|
764 |
+
"total_flos": 1.2489741444494131e+17,
|
765 |
+
"train_loss": 5.366477503620405,
|
766 |
+
"train_runtime": 9239.2947,
|
767 |
+
"train_samples_per_second": 43.945,
|
768 |
+
"train_steps_per_second": 2.747
|
769 |
+
}
|
770 |
+
],
|
771 |
+
"logging_steps": 500,
|
772 |
+
"max_steps": 25377,
|
773 |
+
"num_input_tokens_seen": 0,
|
774 |
+
"num_train_epochs": 3,
|
775 |
+
"save_steps": 500,
|
776 |
+
"total_flos": 1.2489741444494131e+17,
|
777 |
+
"train_batch_size": 8,
|
778 |
+
"trial_name": null,
|
779 |
+
"trial_params": null
|
780 |
+
}
|