Generated from Trainer
Eval Results
tejaskamtam commited on
Commit
b937976
1 Parent(s): 44b1319

End of training

Browse files
README.md ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/bart-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - datasets/all_binary_and_xe_ey_fae_counterfactual
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: bart-adapter-finetuned-xe_ey_fae
12
+ results:
13
+ - task:
14
+ name: Masked Language Modeling
15
+ type: fill-mask
16
+ dataset:
17
+ name: datasets/all_binary_and_xe_ey_fae_counterfactual
18
+ type: datasets/all_binary_and_xe_ey_fae_counterfactual
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value: 0.3096946377787028
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # bart-adapter-finetuned-xe_ey_fae
29
+
30
+ This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the datasets/all_binary_and_xe_ey_fae_counterfactual dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 4.2302
33
+ - Accuracy: 0.3097
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 1e-05
53
+ - train_batch_size: 8
54
+ - eval_batch_size: 8
55
+ - seed: 100
56
+ - gradient_accumulation_steps: 2
57
+ - total_train_batch_size: 16
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 3.0
61
+ - mixed_precision_training: Native AMP
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
67
+ | 7.6974 | 0.06 | 500 | 6.7246 | 0.0649 |
68
+ | 6.8017 | 0.12 | 1000 | 6.4067 | 0.0762 |
69
+ | 6.5894 | 0.18 | 1500 | 6.2661 | 0.0821 |
70
+ | 6.443 | 0.24 | 2000 | 6.1350 | 0.0905 |
71
+ | 6.3245 | 0.3 | 2500 | 6.0024 | 0.1008 |
72
+ | 6.2208 | 0.35 | 3000 | 5.8518 | 0.1145 |
73
+ | 6.097 | 0.41 | 3500 | 5.6588 | 0.1330 |
74
+ | 5.9862 | 0.47 | 4000 | 5.4641 | 0.1543 |
75
+ | 5.8742 | 0.53 | 4500 | 5.3200 | 0.1707 |
76
+ | 5.7716 | 0.59 | 5000 | 5.2044 | 0.1840 |
77
+ | 5.6952 | 0.65 | 5500 | 5.1154 | 0.1952 |
78
+ | 5.6209 | 0.71 | 6000 | 5.0428 | 0.2044 |
79
+ | 5.5752 | 0.77 | 6500 | 4.9711 | 0.2136 |
80
+ | 5.5091 | 0.83 | 7000 | 4.9078 | 0.2212 |
81
+ | 5.4657 | 0.89 | 7500 | 4.8495 | 0.2287 |
82
+ | 5.4245 | 0.95 | 8000 | 4.8012 | 0.2360 |
83
+ | 5.3813 | 1.0 | 8500 | 4.7563 | 0.2409 |
84
+ | 5.3501 | 1.06 | 9000 | 4.7166 | 0.2464 |
85
+ | 5.3098 | 1.12 | 9500 | 4.6838 | 0.2501 |
86
+ | 5.2856 | 1.18 | 10000 | 4.6515 | 0.2551 |
87
+ | 5.2549 | 1.24 | 10500 | 4.6121 | 0.2602 |
88
+ | 5.2217 | 1.3 | 11000 | 4.5841 | 0.2637 |
89
+ | 5.1997 | 1.36 | 11500 | 4.5588 | 0.2674 |
90
+ | 5.1844 | 1.42 | 12000 | 4.5309 | 0.2708 |
91
+ | 5.1491 | 1.48 | 12500 | 4.4999 | 0.2748 |
92
+ | 5.1244 | 1.54 | 13000 | 4.4783 | 0.2780 |
93
+ | 5.1047 | 1.6 | 13500 | 4.4561 | 0.2812 |
94
+ | 5.0917 | 1.66 | 14000 | 4.4409 | 0.2826 |
95
+ | 5.0631 | 1.71 | 14500 | 4.4198 | 0.2851 |
96
+ | 5.0537 | 1.77 | 15000 | 4.4003 | 0.2881 |
97
+ | 5.0339 | 1.83 | 15500 | 4.3855 | 0.2899 |
98
+ | 5.0235 | 1.89 | 16000 | 4.3650 | 0.2921 |
99
+ | 5.0074 | 1.95 | 16500 | 4.3496 | 0.2942 |
100
+ | 4.9927 | 2.01 | 17000 | 4.3361 | 0.2965 |
101
+ | 4.9797 | 2.07 | 17500 | 4.3203 | 0.2981 |
102
+ | 4.9725 | 2.13 | 18000 | 4.3118 | 0.2995 |
103
+ | 4.9552 | 2.19 | 18500 | 4.2977 | 0.3012 |
104
+ | 4.956 | 2.25 | 19000 | 4.2894 | 0.3019 |
105
+ | 4.9427 | 2.31 | 19500 | 4.2781 | 0.3036 |
106
+ | 4.9337 | 2.36 | 20000 | 4.2773 | 0.3038 |
107
+ | 4.9333 | 2.42 | 20500 | 4.2624 | 0.3056 |
108
+ | 4.9173 | 2.48 | 21000 | 4.2643 | 0.3059 |
109
+ | 4.915 | 2.54 | 21500 | 4.2537 | 0.3069 |
110
+ | 4.9092 | 2.6 | 22000 | 4.2457 | 0.3084 |
111
+ | 4.9043 | 2.66 | 22500 | 4.2456 | 0.3081 |
112
+ | 4.9014 | 2.72 | 23000 | 4.2424 | 0.3087 |
113
+ | 4.8889 | 2.78 | 23500 | 4.2347 | 0.3104 |
114
+ | 4.8898 | 2.84 | 24000 | 4.2340 | 0.3095 |
115
+ | 4.8814 | 2.9 | 24500 | 4.2297 | 0.3100 |
116
+ | 4.8804 | 2.96 | 25000 | 4.2290 | 0.3095 |
117
+
118
+
119
+ ### Framework versions
120
+
121
+ - Transformers 4.36.2
122
+ - Pytorch 2.2.0+cu121
123
+ - Datasets 2.17.0
124
+ - Tokenizers 0.15.2
all_results.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.3096946377787028,
4
+ "eval_loss": 4.230222225189209,
5
+ "eval_runtime": 94.6692,
6
+ "eval_samples": 16928,
7
+ "eval_samples_per_second": 178.812,
8
+ "eval_steps_per_second": 22.352,
9
+ "perplexity": 68.73250457066099,
10
+ "train_loss": 5.366477503620405,
11
+ "train_runtime": 9239.2947,
12
+ "train_samples": 135339,
13
+ "train_samples_per_second": 43.945,
14
+ "train_steps_per_second": 2.747
15
+ }
datasets/all_binary_and_xe_ey_fae_counterfactual/adapter_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "config": {
3
+ "adapter_residual_before_ln": false,
4
+ "cross_adapter": false,
5
+ "factorized_phm_W": true,
6
+ "factorized_phm_rule": false,
7
+ "hypercomplex_nonlinearity": "glorot-uniform",
8
+ "init_weights": "bert",
9
+ "inv_adapter": null,
10
+ "inv_adapter_reduction_factor": null,
11
+ "is_parallel": false,
12
+ "learn_phm": true,
13
+ "leave_out": [],
14
+ "ln_after": false,
15
+ "ln_before": false,
16
+ "mh_adapter": false,
17
+ "non_linearity": "relu",
18
+ "original_ln_after": true,
19
+ "original_ln_before": true,
20
+ "output_adapter": true,
21
+ "phm_bias": true,
22
+ "phm_c_init": "normal",
23
+ "phm_dim": 4,
24
+ "phm_init_range": 0.0001,
25
+ "phm_layer": false,
26
+ "phm_rank": 1,
27
+ "reduction_factor": 16,
28
+ "residual_before_ln": true,
29
+ "scaling": 1.0,
30
+ "shared_W_phm": false,
31
+ "shared_phm_rule": true,
32
+ "use_gating": false
33
+ },
34
+ "config_id": "9076f36a74755ac4",
35
+ "hidden_size": 768,
36
+ "model_class": "BartForConditionalGeneration",
37
+ "model_name": "facebook/bart-base",
38
+ "model_type": "bart",
39
+ "name": "datasets/all_binary_and_xe_ey_fae_counterfactual",
40
+ "version": "0.1.2"
41
+ }
datasets/all_binary_and_xe_ey_fae_counterfactual/head_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "config": null,
3
+ "hidden_size": 768,
4
+ "label2id": {
5
+ "LABEL_0": 0,
6
+ "LABEL_1": 1,
7
+ "LABEL_2": 2
8
+ },
9
+ "model_class": "BartForConditionalGeneration",
10
+ "model_name": "facebook/bart-base",
11
+ "model_type": "bart",
12
+ "name": null,
13
+ "num_labels": 3,
14
+ "version": "0.1.2"
15
+ }
datasets/all_binary_and_xe_ey_fae_counterfactual/pytorch_adapter.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd537533b0c653bcf2b6e451ff533e956883139d3cee87e3f2b00be4c8b6c9dd
3
+ size 3598054
datasets/all_binary_and_xe_ey_fae_counterfactual/pytorch_model_head.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbca71e86a3e2c371d8bf759d9ee58c7ad16e830743ef402deeebf64852dd8eb
3
+ size 154616666
eval_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.3096946377787028,
4
+ "eval_loss": 4.230222225189209,
5
+ "eval_runtime": 94.6692,
6
+ "eval_samples": 16928,
7
+ "eval_samples_per_second": 178.812,
8
+ "eval_steps_per_second": 22.352,
9
+ "perplexity": 68.73250457066099
10
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "train_loss": 5.366477503620405,
4
+ "train_runtime": 9239.2947,
5
+ "train_samples": 135339,
6
+ "train_samples_per_second": 43.945,
7
+ "train_steps_per_second": 2.747
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,780 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 4.228977203369141,
3
+ "best_model_checkpoint": "finetuning/output/bart-adapter-finetuned_xe_ey_fae/checkpoint-25000",
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 25377,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.06,
13
+ "learning_rate": 9.804547424833511e-06,
14
+ "loss": 7.6974,
15
+ "step": 500
16
+ },
17
+ {
18
+ "epoch": 0.06,
19
+ "eval_accuracy": 0.06490582319808594,
20
+ "eval_loss": 6.724620819091797,
21
+ "eval_runtime": 94.6343,
22
+ "eval_samples_per_second": 178.878,
23
+ "eval_steps_per_second": 22.36,
24
+ "step": 500
25
+ },
26
+ {
27
+ "epoch": 0.12,
28
+ "learning_rate": 9.607912676833355e-06,
29
+ "loss": 6.8017,
30
+ "step": 1000
31
+ },
32
+ {
33
+ "epoch": 0.12,
34
+ "eval_accuracy": 0.07624003920813896,
35
+ "eval_loss": 6.406736373901367,
36
+ "eval_runtime": 94.6629,
37
+ "eval_samples_per_second": 178.824,
38
+ "eval_steps_per_second": 22.353,
39
+ "step": 1000
40
+ },
41
+ {
42
+ "epoch": 0.18,
43
+ "learning_rate": 9.410883871221972e-06,
44
+ "loss": 6.5894,
45
+ "step": 1500
46
+ },
47
+ {
48
+ "epoch": 0.18,
49
+ "eval_accuracy": 0.08208813335328147,
50
+ "eval_loss": 6.266135215759277,
51
+ "eval_runtime": 94.5601,
52
+ "eval_samples_per_second": 179.019,
53
+ "eval_steps_per_second": 22.377,
54
+ "step": 1500
55
+ },
56
+ {
57
+ "epoch": 0.24,
58
+ "learning_rate": 9.213855065610593e-06,
59
+ "loss": 6.443,
60
+ "step": 2000
61
+ },
62
+ {
63
+ "epoch": 0.24,
64
+ "eval_accuracy": 0.09051518335536303,
65
+ "eval_loss": 6.134974002838135,
66
+ "eval_runtime": 94.5786,
67
+ "eval_samples_per_second": 178.983,
68
+ "eval_steps_per_second": 22.373,
69
+ "step": 2000
70
+ },
71
+ {
72
+ "epoch": 0.3,
73
+ "learning_rate": 9.016826259999214e-06,
74
+ "loss": 6.3245,
75
+ "step": 2500
76
+ },
77
+ {
78
+ "epoch": 0.3,
79
+ "eval_accuracy": 0.10075202490707738,
80
+ "eval_loss": 6.002374172210693,
81
+ "eval_runtime": 94.5343,
82
+ "eval_samples_per_second": 179.067,
83
+ "eval_steps_per_second": 22.383,
84
+ "step": 2500
85
+ },
86
+ {
87
+ "epoch": 0.35,
88
+ "learning_rate": 8.819797454387831e-06,
89
+ "loss": 6.2208,
90
+ "step": 3000
91
+ },
92
+ {
93
+ "epoch": 0.35,
94
+ "eval_accuracy": 0.11453583223288173,
95
+ "eval_loss": 5.851789474487305,
96
+ "eval_runtime": 94.517,
97
+ "eval_samples_per_second": 179.1,
98
+ "eval_steps_per_second": 22.388,
99
+ "step": 3000
100
+ },
101
+ {
102
+ "epoch": 0.41,
103
+ "learning_rate": 8.622768648776452e-06,
104
+ "loss": 6.097,
105
+ "step": 3500
106
+ },
107
+ {
108
+ "epoch": 0.41,
109
+ "eval_accuracy": 0.13295434177816914,
110
+ "eval_loss": 5.658839225769043,
111
+ "eval_runtime": 94.5475,
112
+ "eval_samples_per_second": 179.042,
113
+ "eval_steps_per_second": 22.38,
114
+ "step": 3500
115
+ },
116
+ {
117
+ "epoch": 0.47,
118
+ "learning_rate": 8.425739843165071e-06,
119
+ "loss": 5.9862,
120
+ "step": 4000
121
+ },
122
+ {
123
+ "epoch": 0.47,
124
+ "eval_accuracy": 0.15434364158992747,
125
+ "eval_loss": 5.464097023010254,
126
+ "eval_runtime": 94.6204,
127
+ "eval_samples_per_second": 178.904,
128
+ "eval_steps_per_second": 22.363,
129
+ "step": 4000
130
+ },
131
+ {
132
+ "epoch": 0.53,
133
+ "learning_rate": 8.22871103755369e-06,
134
+ "loss": 5.8742,
135
+ "step": 4500
136
+ },
137
+ {
138
+ "epoch": 0.53,
139
+ "eval_accuracy": 0.17065464547534417,
140
+ "eval_loss": 5.319990158081055,
141
+ "eval_runtime": 94.6537,
142
+ "eval_samples_per_second": 178.841,
143
+ "eval_steps_per_second": 22.355,
144
+ "step": 4500
145
+ },
146
+ {
147
+ "epoch": 0.59,
148
+ "learning_rate": 8.03168223194231e-06,
149
+ "loss": 5.7716,
150
+ "step": 5000
151
+ },
152
+ {
153
+ "epoch": 0.59,
154
+ "eval_accuracy": 0.1840178168169571,
155
+ "eval_loss": 5.204446315765381,
156
+ "eval_runtime": 94.6335,
157
+ "eval_samples_per_second": 178.879,
158
+ "eval_steps_per_second": 22.36,
159
+ "step": 5000
160
+ },
161
+ {
162
+ "epoch": 0.65,
163
+ "learning_rate": 7.83465342633093e-06,
164
+ "loss": 5.6952,
165
+ "step": 5500
166
+ },
167
+ {
168
+ "epoch": 0.65,
169
+ "eval_accuracy": 0.19522825907475083,
170
+ "eval_loss": 5.11543607711792,
171
+ "eval_runtime": 94.6161,
172
+ "eval_samples_per_second": 178.913,
173
+ "eval_steps_per_second": 22.364,
174
+ "step": 5500
175
+ },
176
+ {
177
+ "epoch": 0.71,
178
+ "learning_rate": 7.63762462071955e-06,
179
+ "loss": 5.6209,
180
+ "step": 6000
181
+ },
182
+ {
183
+ "epoch": 0.71,
184
+ "eval_accuracy": 0.20442877856808384,
185
+ "eval_loss": 5.042799949645996,
186
+ "eval_runtime": 94.6498,
187
+ "eval_samples_per_second": 178.849,
188
+ "eval_steps_per_second": 22.356,
189
+ "step": 6000
190
+ },
191
+ {
192
+ "epoch": 0.77,
193
+ "learning_rate": 7.440595815108169e-06,
194
+ "loss": 5.5752,
195
+ "step": 6500
196
+ },
197
+ {
198
+ "epoch": 0.77,
199
+ "eval_accuracy": 0.21356098820506358,
200
+ "eval_loss": 4.97105598449707,
201
+ "eval_runtime": 94.647,
202
+ "eval_samples_per_second": 178.854,
203
+ "eval_steps_per_second": 22.357,
204
+ "step": 6500
205
+ },
206
+ {
207
+ "epoch": 0.83,
208
+ "learning_rate": 7.2435670094967895e-06,
209
+ "loss": 5.5091,
210
+ "step": 7000
211
+ },
212
+ {
213
+ "epoch": 0.83,
214
+ "eval_accuracy": 0.2211917808858752,
215
+ "eval_loss": 4.907817363739014,
216
+ "eval_runtime": 94.6132,
217
+ "eval_samples_per_second": 178.918,
218
+ "eval_steps_per_second": 22.365,
219
+ "step": 7000
220
+ },
221
+ {
222
+ "epoch": 0.89,
223
+ "learning_rate": 7.0465382038854095e-06,
224
+ "loss": 5.4657,
225
+ "step": 7500
226
+ },
227
+ {
228
+ "epoch": 0.89,
229
+ "eval_accuracy": 0.22866674452100122,
230
+ "eval_loss": 4.849499225616455,
231
+ "eval_runtime": 94.6751,
232
+ "eval_samples_per_second": 178.801,
233
+ "eval_steps_per_second": 22.35,
234
+ "step": 7500
235
+ },
236
+ {
237
+ "epoch": 0.95,
238
+ "learning_rate": 6.849509398274028e-06,
239
+ "loss": 5.4245,
240
+ "step": 8000
241
+ },
242
+ {
243
+ "epoch": 0.95,
244
+ "eval_accuracy": 0.2359544531397667,
245
+ "eval_loss": 4.801201343536377,
246
+ "eval_runtime": 94.5944,
247
+ "eval_samples_per_second": 178.954,
248
+ "eval_steps_per_second": 22.369,
249
+ "step": 8000
250
+ },
251
+ {
252
+ "epoch": 1.0,
253
+ "learning_rate": 6.652480592662648e-06,
254
+ "loss": 5.3813,
255
+ "step": 8500
256
+ },
257
+ {
258
+ "epoch": 1.0,
259
+ "eval_accuracy": 0.24091048075194954,
260
+ "eval_loss": 4.756309986114502,
261
+ "eval_runtime": 94.6708,
262
+ "eval_samples_per_second": 178.809,
263
+ "eval_steps_per_second": 22.351,
264
+ "step": 8500
265
+ },
266
+ {
267
+ "epoch": 1.06,
268
+ "learning_rate": 6.4554517870512675e-06,
269
+ "loss": 5.3501,
270
+ "step": 9000
271
+ },
272
+ {
273
+ "epoch": 1.06,
274
+ "eval_accuracy": 0.24637192061403781,
275
+ "eval_loss": 4.716611862182617,
276
+ "eval_runtime": 94.6539,
277
+ "eval_samples_per_second": 178.841,
278
+ "eval_steps_per_second": 22.355,
279
+ "step": 9000
280
+ },
281
+ {
282
+ "epoch": 1.12,
283
+ "learning_rate": 6.2584229814398866e-06,
284
+ "loss": 5.3098,
285
+ "step": 9500
286
+ },
287
+ {
288
+ "epoch": 1.12,
289
+ "eval_accuracy": 0.2501098972917417,
290
+ "eval_loss": 4.683783054351807,
291
+ "eval_runtime": 94.7201,
292
+ "eval_samples_per_second": 178.716,
293
+ "eval_steps_per_second": 22.339,
294
+ "step": 9500
295
+ },
296
+ {
297
+ "epoch": 1.18,
298
+ "learning_rate": 6.0613941758285065e-06,
299
+ "loss": 5.2856,
300
+ "step": 10000
301
+ },
302
+ {
303
+ "epoch": 1.18,
304
+ "eval_accuracy": 0.2551260313174862,
305
+ "eval_loss": 4.651512622833252,
306
+ "eval_runtime": 94.7148,
307
+ "eval_samples_per_second": 178.726,
308
+ "eval_steps_per_second": 22.341,
309
+ "step": 10000
310
+ },
311
+ {
312
+ "epoch": 1.24,
313
+ "learning_rate": 5.864365370217126e-06,
314
+ "loss": 5.2549,
315
+ "step": 10500
316
+ },
317
+ {
318
+ "epoch": 1.24,
319
+ "eval_accuracy": 0.2601890994584574,
320
+ "eval_loss": 4.612128257751465,
321
+ "eval_runtime": 94.6453,
322
+ "eval_samples_per_second": 178.857,
323
+ "eval_steps_per_second": 22.357,
324
+ "step": 10500
325
+ },
326
+ {
327
+ "epoch": 1.3,
328
+ "learning_rate": 5.6673365646057455e-06,
329
+ "loss": 5.2217,
330
+ "step": 11000
331
+ },
332
+ {
333
+ "epoch": 1.3,
334
+ "eval_accuracy": 0.2636951256551434,
335
+ "eval_loss": 4.5841240882873535,
336
+ "eval_runtime": 94.6678,
337
+ "eval_samples_per_second": 178.815,
338
+ "eval_steps_per_second": 22.352,
339
+ "step": 11000
340
+ },
341
+ {
342
+ "epoch": 1.36,
343
+ "learning_rate": 5.470701816605588e-06,
344
+ "loss": 5.1997,
345
+ "step": 11500
346
+ },
347
+ {
348
+ "epoch": 1.36,
349
+ "eval_accuracy": 0.267359922045739,
350
+ "eval_loss": 4.558795928955078,
351
+ "eval_runtime": 94.6574,
352
+ "eval_samples_per_second": 178.834,
353
+ "eval_steps_per_second": 22.354,
354
+ "step": 11500
355
+ },
356
+ {
357
+ "epoch": 1.42,
358
+ "learning_rate": 5.273673010994208e-06,
359
+ "loss": 5.1844,
360
+ "step": 12000
361
+ },
362
+ {
363
+ "epoch": 1.42,
364
+ "eval_accuracy": 0.27077985002194555,
365
+ "eval_loss": 4.530928611755371,
366
+ "eval_runtime": 94.6472,
367
+ "eval_samples_per_second": 178.854,
368
+ "eval_steps_per_second": 22.357,
369
+ "step": 12000
370
+ },
371
+ {
372
+ "epoch": 1.48,
373
+ "learning_rate": 5.076644205382827e-06,
374
+ "loss": 5.1491,
375
+ "step": 12500
376
+ },
377
+ {
378
+ "epoch": 1.48,
379
+ "eval_accuracy": 0.27483096084023484,
380
+ "eval_loss": 4.499913692474365,
381
+ "eval_runtime": 94.5904,
382
+ "eval_samples_per_second": 178.961,
383
+ "eval_steps_per_second": 22.37,
384
+ "step": 12500
385
+ },
386
+ {
387
+ "epoch": 1.54,
388
+ "learning_rate": 4.879615399771447e-06,
389
+ "loss": 5.1244,
390
+ "step": 13000
391
+ },
392
+ {
393
+ "epoch": 1.54,
394
+ "eval_accuracy": 0.27797822970103025,
395
+ "eval_loss": 4.47827672958374,
396
+ "eval_runtime": 94.6192,
397
+ "eval_samples_per_second": 178.907,
398
+ "eval_steps_per_second": 22.363,
399
+ "step": 13000
400
+ },
401
+ {
402
+ "epoch": 1.6,
403
+ "learning_rate": 4.6825865941600665e-06,
404
+ "loss": 5.1047,
405
+ "step": 13500
406
+ },
407
+ {
408
+ "epoch": 1.6,
409
+ "eval_accuracy": 0.28116894803558673,
410
+ "eval_loss": 4.456052780151367,
411
+ "eval_runtime": 94.6508,
412
+ "eval_samples_per_second": 178.847,
413
+ "eval_steps_per_second": 22.356,
414
+ "step": 13500
415
+ },
416
+ {
417
+ "epoch": 1.66,
418
+ "learning_rate": 4.485557788548686e-06,
419
+ "loss": 5.0917,
420
+ "step": 14000
421
+ },
422
+ {
423
+ "epoch": 1.66,
424
+ "eval_accuracy": 0.28257652944074685,
425
+ "eval_loss": 4.440920352935791,
426
+ "eval_runtime": 94.6448,
427
+ "eval_samples_per_second": 178.858,
428
+ "eval_steps_per_second": 22.357,
429
+ "step": 14000
430
+ },
431
+ {
432
+ "epoch": 1.71,
433
+ "learning_rate": 4.2885289829373055e-06,
434
+ "loss": 5.0631,
435
+ "step": 14500
436
+ },
437
+ {
438
+ "epoch": 1.71,
439
+ "eval_accuracy": 0.2851284480287185,
440
+ "eval_loss": 4.4198174476623535,
441
+ "eval_runtime": 94.6157,
442
+ "eval_samples_per_second": 178.913,
443
+ "eval_steps_per_second": 22.364,
444
+ "step": 14500
445
+ },
446
+ {
447
+ "epoch": 1.77,
448
+ "learning_rate": 4.091500177325925e-06,
449
+ "loss": 5.0537,
450
+ "step": 15000
451
+ },
452
+ {
453
+ "epoch": 1.77,
454
+ "eval_accuracy": 0.2881034378022738,
455
+ "eval_loss": 4.400303840637207,
456
+ "eval_runtime": 94.6637,
457
+ "eval_samples_per_second": 178.823,
458
+ "eval_steps_per_second": 22.353,
459
+ "step": 15000
460
+ },
461
+ {
462
+ "epoch": 1.83,
463
+ "learning_rate": 3.894865429325768e-06,
464
+ "loss": 5.0339,
465
+ "step": 15500
466
+ },
467
+ {
468
+ "epoch": 1.83,
469
+ "eval_accuracy": 0.2898631699682636,
470
+ "eval_loss": 4.385478973388672,
471
+ "eval_runtime": 94.7914,
472
+ "eval_samples_per_second": 178.582,
473
+ "eval_steps_per_second": 22.323,
474
+ "step": 15500
475
+ },
476
+ {
477
+ "epoch": 1.89,
478
+ "learning_rate": 3.6978366237143875e-06,
479
+ "loss": 5.0235,
480
+ "step": 16000
481
+ },
482
+ {
483
+ "epoch": 1.89,
484
+ "eval_accuracy": 0.29213215439190976,
485
+ "eval_loss": 4.3650221824646,
486
+ "eval_runtime": 94.7339,
487
+ "eval_samples_per_second": 178.69,
488
+ "eval_steps_per_second": 22.336,
489
+ "step": 16000
490
+ },
491
+ {
492
+ "epoch": 1.95,
493
+ "learning_rate": 3.500807818103007e-06,
494
+ "loss": 5.0074,
495
+ "step": 16500
496
+ },
497
+ {
498
+ "epoch": 1.95,
499
+ "eval_accuracy": 0.2941743633357399,
500
+ "eval_loss": 4.349618911743164,
501
+ "eval_runtime": 94.7186,
502
+ "eval_samples_per_second": 178.719,
503
+ "eval_steps_per_second": 22.34,
504
+ "step": 16500
505
+ },
506
+ {
507
+ "epoch": 2.01,
508
+ "learning_rate": 3.304173070102849e-06,
509
+ "loss": 4.9927,
510
+ "step": 17000
511
+ },
512
+ {
513
+ "epoch": 2.01,
514
+ "eval_accuracy": 0.2964732381378149,
515
+ "eval_loss": 4.336081027984619,
516
+ "eval_runtime": 94.7044,
517
+ "eval_samples_per_second": 178.746,
518
+ "eval_steps_per_second": 22.343,
519
+ "step": 17000
520
+ },
521
+ {
522
+ "epoch": 2.07,
523
+ "learning_rate": 3.107144264491469e-06,
524
+ "loss": 4.9797,
525
+ "step": 17500
526
+ },
527
+ {
528
+ "epoch": 2.07,
529
+ "eval_accuracy": 0.2981180855432632,
530
+ "eval_loss": 4.320304870605469,
531
+ "eval_runtime": 94.752,
532
+ "eval_samples_per_second": 178.656,
533
+ "eval_steps_per_second": 22.332,
534
+ "step": 17500
535
+ },
536
+ {
537
+ "epoch": 2.13,
538
+ "learning_rate": 2.9101154588800883e-06,
539
+ "loss": 4.9725,
540
+ "step": 18000
541
+ },
542
+ {
543
+ "epoch": 2.13,
544
+ "eval_accuracy": 0.2994866192996549,
545
+ "eval_loss": 4.311823844909668,
546
+ "eval_runtime": 94.7748,
547
+ "eval_samples_per_second": 178.613,
548
+ "eval_steps_per_second": 22.327,
549
+ "step": 18000
550
+ },
551
+ {
552
+ "epoch": 2.19,
553
+ "learning_rate": 2.713086653268708e-06,
554
+ "loss": 4.9552,
555
+ "step": 18500
556
+ },
557
+ {
558
+ "epoch": 2.19,
559
+ "eval_accuracy": 0.3011751340054841,
560
+ "eval_loss": 4.297677516937256,
561
+ "eval_runtime": 94.6902,
562
+ "eval_samples_per_second": 178.772,
563
+ "eval_steps_per_second": 22.347,
564
+ "step": 18500
565
+ },
566
+ {
567
+ "epoch": 2.25,
568
+ "learning_rate": 2.5160578476573277e-06,
569
+ "loss": 4.956,
570
+ "step": 19000
571
+ },
572
+ {
573
+ "epoch": 2.25,
574
+ "eval_accuracy": 0.3018521891702124,
575
+ "eval_loss": 4.289434909820557,
576
+ "eval_runtime": 94.6916,
577
+ "eval_samples_per_second": 178.77,
578
+ "eval_steps_per_second": 22.346,
579
+ "step": 19000
580
+ },
581
+ {
582
+ "epoch": 2.31,
583
+ "learning_rate": 2.3190290420459476e-06,
584
+ "loss": 4.9427,
585
+ "step": 19500
586
+ },
587
+ {
588
+ "epoch": 2.31,
589
+ "eval_accuracy": 0.30359935941560284,
590
+ "eval_loss": 4.278063774108887,
591
+ "eval_runtime": 94.7241,
592
+ "eval_samples_per_second": 178.709,
593
+ "eval_steps_per_second": 22.339,
594
+ "step": 19500
595
+ },
596
+ {
597
+ "epoch": 2.36,
598
+ "learning_rate": 2.12239429404579e-06,
599
+ "loss": 4.9337,
600
+ "step": 20000
601
+ },
602
+ {
603
+ "epoch": 2.36,
604
+ "eval_accuracy": 0.30382226071056156,
605
+ "eval_loss": 4.277279853820801,
606
+ "eval_runtime": 94.6289,
607
+ "eval_samples_per_second": 178.888,
608
+ "eval_steps_per_second": 22.361,
609
+ "step": 20000
610
+ },
611
+ {
612
+ "epoch": 2.42,
613
+ "learning_rate": 1.9253654884344093e-06,
614
+ "loss": 4.9333,
615
+ "step": 20500
616
+ },
617
+ {
618
+ "epoch": 2.42,
619
+ "eval_accuracy": 0.305628714892609,
620
+ "eval_loss": 4.262350559234619,
621
+ "eval_runtime": 94.5958,
622
+ "eval_samples_per_second": 178.951,
623
+ "eval_steps_per_second": 22.369,
624
+ "step": 20500
625
+ },
626
+ {
627
+ "epoch": 2.48,
628
+ "learning_rate": 1.7283366828230288e-06,
629
+ "loss": 4.9173,
630
+ "step": 21000
631
+ },
632
+ {
633
+ "epoch": 2.48,
634
+ "eval_accuracy": 0.30594861364613246,
635
+ "eval_loss": 4.26426887512207,
636
+ "eval_runtime": 94.6851,
637
+ "eval_samples_per_second": 178.782,
638
+ "eval_steps_per_second": 22.348,
639
+ "step": 21000
640
+ },
641
+ {
642
+ "epoch": 2.54,
643
+ "learning_rate": 1.5313078772116485e-06,
644
+ "loss": 4.915,
645
+ "step": 21500
646
+ },
647
+ {
648
+ "epoch": 2.54,
649
+ "eval_accuracy": 0.3068805715197335,
650
+ "eval_loss": 4.253678321838379,
651
+ "eval_runtime": 94.5821,
652
+ "eval_samples_per_second": 178.977,
653
+ "eval_steps_per_second": 22.372,
654
+ "step": 21500
655
+ },
656
+ {
657
+ "epoch": 2.6,
658
+ "learning_rate": 1.3342790716002682e-06,
659
+ "loss": 4.9092,
660
+ "step": 22000
661
+ },
662
+ {
663
+ "epoch": 2.6,
664
+ "eval_accuracy": 0.30841780910899225,
665
+ "eval_loss": 4.245660781860352,
666
+ "eval_runtime": 94.6548,
667
+ "eval_samples_per_second": 178.839,
668
+ "eval_steps_per_second": 22.355,
669
+ "step": 22000
670
+ },
671
+ {
672
+ "epoch": 2.66,
673
+ "learning_rate": 1.1372502659888877e-06,
674
+ "loss": 4.9043,
675
+ "step": 22500
676
+ },
677
+ {
678
+ "epoch": 2.66,
679
+ "eval_accuracy": 0.3080689795368392,
680
+ "eval_loss": 4.245626926422119,
681
+ "eval_runtime": 94.7104,
682
+ "eval_samples_per_second": 178.734,
683
+ "eval_steps_per_second": 22.342,
684
+ "step": 22500
685
+ },
686
+ {
687
+ "epoch": 2.72,
688
+ "learning_rate": 9.402214603775073e-07,
689
+ "loss": 4.9014,
690
+ "step": 23000
691
+ },
692
+ {
693
+ "epoch": 2.72,
694
+ "eval_accuracy": 0.3087008130169778,
695
+ "eval_loss": 4.24239444732666,
696
+ "eval_runtime": 94.6532,
697
+ "eval_samples_per_second": 178.842,
698
+ "eval_steps_per_second": 22.355,
699
+ "step": 23000
700
+ },
701
+ {
702
+ "epoch": 2.78,
703
+ "learning_rate": 7.431926547661269e-07,
704
+ "loss": 4.8889,
705
+ "step": 23500
706
+ },
707
+ {
708
+ "epoch": 2.78,
709
+ "eval_accuracy": 0.3103718452365669,
710
+ "eval_loss": 4.2347259521484375,
711
+ "eval_runtime": 94.6443,
712
+ "eval_samples_per_second": 178.859,
713
+ "eval_steps_per_second": 22.357,
714
+ "step": 23500
715
+ },
716
+ {
717
+ "epoch": 2.84,
718
+ "learning_rate": 5.461638491547465e-07,
719
+ "loss": 4.8898,
720
+ "step": 24000
721
+ },
722
+ {
723
+ "epoch": 2.84,
724
+ "eval_accuracy": 0.30947218110795954,
725
+ "eval_loss": 4.233951091766357,
726
+ "eval_runtime": 94.5592,
727
+ "eval_samples_per_second": 179.02,
728
+ "eval_steps_per_second": 22.378,
729
+ "step": 24000
730
+ },
731
+ {
732
+ "epoch": 2.9,
733
+ "learning_rate": 3.4952910115458886e-07,
734
+ "loss": 4.8814,
735
+ "step": 24500
736
+ },
737
+ {
738
+ "epoch": 2.9,
739
+ "eval_accuracy": 0.31004912351666813,
740
+ "eval_loss": 4.2296977043151855,
741
+ "eval_runtime": 94.6234,
742
+ "eval_samples_per_second": 178.899,
743
+ "eval_steps_per_second": 22.362,
744
+ "step": 24500
745
+ },
746
+ {
747
+ "epoch": 2.96,
748
+ "learning_rate": 1.5250029554320843e-07,
749
+ "loss": 4.8804,
750
+ "step": 25000
751
+ },
752
+ {
753
+ "epoch": 2.96,
754
+ "eval_accuracy": 0.3095025688930406,
755
+ "eval_loss": 4.228977203369141,
756
+ "eval_runtime": 94.5894,
757
+ "eval_samples_per_second": 178.963,
758
+ "eval_steps_per_second": 22.37,
759
+ "step": 25000
760
+ },
761
+ {
762
+ "epoch": 3.0,
763
+ "step": 25377,
764
+ "total_flos": 1.2489741444494131e+17,
765
+ "train_loss": 5.366477503620405,
766
+ "train_runtime": 9239.2947,
767
+ "train_samples_per_second": 43.945,
768
+ "train_steps_per_second": 2.747
769
+ }
770
+ ],
771
+ "logging_steps": 500,
772
+ "max_steps": 25377,
773
+ "num_input_tokens_seen": 0,
774
+ "num_train_epochs": 3,
775
+ "save_steps": 500,
776
+ "total_flos": 1.2489741444494131e+17,
777
+ "train_batch_size": 8,
778
+ "trial_name": null,
779
+ "trial_params": null
780
+ }