ubamba98 commited on
Commit
dc80378
1 Parent(s): bea2235

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-xls-r-300m-CV8-ro
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-xls-r-300m-CV8-ro
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1619
20
+ - Wer: 0.6045
21
+ - Cer: 0.0479
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0003
41
+ - train_batch_size: 16
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 64
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_steps: 2000
49
+ - num_epochs: 50.0
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
55
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
56
+ | 2.9736 | 3.62 | 500 | 2.9508 | 1.0 | 1.0 |
57
+ | 1.3293 | 7.25 | 1000 | 0.3330 | 0.8407 | 0.0862 |
58
+ | 0.956 | 10.87 | 1500 | 0.2042 | 0.6872 | 0.0602 |
59
+ | 0.9509 | 14.49 | 2000 | 0.2184 | 0.7088 | 0.0652 |
60
+ | 0.9272 | 18.12 | 2500 | 0.2312 | 0.7211 | 0.0703 |
61
+ | 0.8561 | 21.74 | 3000 | 0.2158 | 0.6838 | 0.0631 |
62
+ | 0.8258 | 25.36 | 3500 | 0.1970 | 0.6844 | 0.0601 |
63
+ | 0.7993 | 28.98 | 4000 | 0.1895 | 0.6698 | 0.0577 |
64
+ | 0.7525 | 32.61 | 4500 | 0.1845 | 0.6453 | 0.0550 |
65
+ | 0.7211 | 36.23 | 5000 | 0.1781 | 0.6274 | 0.0531 |
66
+ | 0.677 | 39.85 | 5500 | 0.1732 | 0.6188 | 0.0514 |
67
+ | 0.6517 | 43.48 | 6000 | 0.1691 | 0.6177 | 0.0503 |
68
+ | 0.6326 | 47.1 | 6500 | 0.1619 | 0.6045 | 0.0479 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.17.0.dev0
74
+ - Pytorch 1.10.2+cu102
75
+ - Datasets 1.18.2.dev0
76
+ - Tokenizers 0.11.0