{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cb51f92c160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cb51f92c1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cb51f92c280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cb51f92c310>", "_build": "<function ActorCriticPolicy._build at 0x7cb51f92c3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7cb51f92c430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cb51f92c4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cb51f92c550>", "_predict": "<function ActorCriticPolicy._predict at 0x7cb51f92c5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cb51f92c670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cb51f92c700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cb51f92c790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cb51f918640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705291477626371436, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3GyTwmBlc/CHuIvaPB6b7oRKu8KTwKPAAAAAAAAAAAmgf1PPY9oz+SMRQ+heb+vjcgVD28poc9AAAAAAAAAAAmCkM+R21GP8QSlr5CwN6+yhtvPWJ9D74AAAAAAAAAADOarD3Q2JU+Fn6DvrLH2r6Hlbi9SVSqvQAAAAAAAAAAAF55PNLVCD9Bpz07offRvll5aTxukSu9AAAAAAAAAADNzx298R3uPRQWtj3hj7i+b/SuPXIRCb0AAAAAAAAAAAaENb5F24A+znGmPt+0s74V0Bm9iZO9PQAAAAAAAAAAsyxuPY86crrLFWaz6p1zrhd0BrtiHbEzAACAPwAAgD9NtQC+0z/UPvOlRD5yw62+OcCIvbXUoj0AAAAAAAAAAM0+hzzSFIW7XpZUu4ZSkDy2o+s8zpt2vQAAgD8AAIA/Zv7LOxDtnj/7bFE9na/nvvMiFzybRpy8AAAAAAAAAAAz85a6Q4KxP0KUt7x1mJ2+5+uYuaXi27wAAAAAAAAAAGbSwTvl+QU+a6Vyval5vL4cukO9/hdRvQAAAAAAAAAADbNBPoWjLj92iKK+oYnmvv3SMTxKqp29AAAAAAAAAABm+S49wmsKPk2Kvr3Gs6O+n/d9vCHQJr0AAAAAAAAAAGazoryuiZO6VW9Os9M35S4gIJY6rq64MwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHErF7hNuceMAWyUS+KMAXSUR0CiayPnr6cidX2UKGgGR0ByMPuCwr1/aAdL4GgIR0Cia0JSJj2BdX2UKGgGR0BySEwDeTFEaAdL2WgIR0Cia83SKFZgdX2UKGgGR0BzBcFMZgogaAdL4WgIR0Cia9/4qPOqdX2UKGgGR0Bycp4X40uUaAdNBAFoCEdAomv9SwW30HV9lChoBkdAb2ePU8V58mgHS9loCEdAomws/QjUu3V9lChoBkdAc1uiliz9j2gHS/RoCEdAomxL4593KXV9lChoBkdAcEOlUp/gBWgHS91oCEdAomyQcT8HfXV9lChoBkdAcesWSlnAZmgHS+xoCEdAom0vcWTHKnV9lChoBkdAc12zQeFL4GgHS/VoCEdAom1goE0SAnV9lChoBkdAcN8lMAWBSWgHS89oCEdAom15hfBvaXV9lChoBkdAcONzzVc2SGgHS/VoCEdAom2f5zo2XXV9lChoBkdAcFho8IRh+mgHS+BoCEdAom2lk1/DtXV9lChoBkdAcAIP07KaHGgHS+xoCEdAom2ydYnv2HV9lChoBkdAcu+EqUeMh2gHS+RoCEdAom3xkupS8HV9lChoBkdAce5tf5ULlWgHS85oCEdAom47+5vtMXV9lChoBkdAcDl5TZQHiWgHS81oCEdAom5QuCf6GnV9lChoBkdAbi/0L+glGGgHS+toCEdAom6JtxdY4nV9lChoBkdAdBT1ct5D7mgHS9VoCEdAom7unjyWiXV9lChoBkdAcW0j/uLJjmgHS+poCEdAom8coa1kUnV9lChoBkdAccGwpON5t2gHS8VoCEdAom8sIqsls3V9lChoBkdAcWGNoakylGgHS/5oCEdAom9R4Oc2BXV9lChoBkdAchhqGlANX2gHS+FoCEdAom9VAVwgknV9lChoBkdAcJEs5GSZB2gHS+poCEdAom9ZC+lCTnV9lChoBkdAcvMlKbrkbWgHS89oCEdAom/uSlnAZnV9lChoBkdAcjwUiY9gW2gHS9BoCEdAonAq+pOvdXV9lChoBkdAcLViMHbAUWgHS/ZoCEdAonBDSiM5wXV9lChoBkdAcEzy+pOvdWgHS9doCEdAonBRr+Hae3V9lChoBkdAcbU0Dlo11mgHS95oCEdAonjGNBF/hHV9lChoBkdAc1tHJLdvbWgHS/FoCEdAonjZBVuJlHV9lChoBkdAcVV2dd3Sr2gHS9JoCEdAonjjeGfwqnV9lChoBkdAcNq1g6U7jmgHS91oCEdAonlDsIE8rHV9lChoBkdAcyRkq+ajOGgHS9xoCEdAonlVfzBhyHV9lChoBkdAc3LZRKpT/GgHS9VoCEdAonl8wco6S3V9lChoBkdAbXuwxnFo+WgHS9ZoCEdAonoS3AmAsnV9lChoBkdAchuywOe8PGgHS8hoCEdAonoe36Q/5nV9lChoBkdAbi3KfWcz7GgHS91oCEdAono9UuL743V9lChoBkdAbnim4y44ImgHS9RoCEdAonpKp1ie/nV9lChoBkdAcSVgWac7Q2gHS+NoCEdAonp0fHPu5XV9lChoBkdAcLwkJa7mMmgHTQEBaAhHQKJ6dEPUayd1fZQoaAZHQHC/Bx95QgtoB0vSaAhHQKJ7BiKBNEh1fZQoaAZHQHH28do371toB0vpaAhHQKJ7FbgTAWV1fZQoaAZHQHGsC88La25oB0vQaAhHQKJ7L1Ng0CR1fZQoaAZHQHOHjIeYD1ZoB0vTaAhHQKJ7VV4HHFR1fZQoaAZHQHImoP9UCJZoB0vnaAhHQKJ7WM2m52B1fZQoaAZHQHKa3sPatcRoB0vcaAhHQKJ7ZAk9lmR1fZQoaAZHQHLFoOc2BJ9oB0vvaAhHQKJ7etz0Yj11fZQoaAZHQHKxZVGTcItoB0vPaAhHQKJ7uloDgZV1fZQoaAZHQHEdrFCLMs9oB0v5aAhHQKJ8KulGgBd1fZQoaAZHQHKnpEhJRO1oB0vzaAhHQKJ8UiEg4fh1fZQoaAZHQHI8ozFdcB5oB0vaaAhHQKJ8mt/4Irx1fZQoaAZHQHGjT4+KTB9oB0vtaAhHQKJ85eHBUJh1fZQoaAZHQHOb7tmcvuhoB0vtaAhHQKJ9Eg5BC2N1fZQoaAZHQHHPURe1KGtoB0vpaAhHQKJ9MbI91U51fZQoaAZHQHJ3eOGTLW9oB00LAWgIR0CifWqxcE/0dX2UKGgGR0BxzjuNPxhEaAdNDQFoCEdAon2qoOx0MnV9lChoBkdAcE2mfXf642gHS+ZoCEdAon3j3IuGsXV9lChoBkdAcvyMKkVN6GgHS+5oCEdAon3uAZsKs3V9lChoBkdAcneTzd1uBWgHS+JoCEdAon3zkS26TXV9lChoBkdAcfyQ+2VmjGgHS9doCEdAon4LdcjZ+XV9lChoBkdAcjzuG9HtnmgHS9FoCEdAon4T/S6UaHV9lChoBkdAcCMwB5ooNWgHS+hoCEdAon4z0aqCH3V9lChoBkdAcx5IJqqOtGgHS+poCEdAon43FtKqXHV9lChoBkdAcd/UnogV5GgHS+loCEdAon6jAtWdVnV9lChoBkdAdCq974SHumgHS9NoCEdAon7N7WuoxnV9lChoBkdAcXnLPldTpGgHS9toCEdAon8N1uBMBnV9lChoBkdAS54IF/x2CGgHS55oCEdAon9TPjXFtXV9lChoBkdAcdQs4ku6E2gHS8xoCEdAon9nVbzK93V9lChoBkdAclprK/20zGgHS8VoCEdAon96BiCrcXV9lChoBkdAcG6IqslsxmgHS+loCEdAon9+Pq9oOHV9lChoBkdAc8XPLPldT2gHS/VoCEdAooAlKdxyXHV9lChoBkdAcmJy31BdEGgHS+doCEdAooCtJg9eQnV9lChoBkdAb1URcu8K5WgHS91oCEdAooDA4jrzG3V9lChoBkdAcStvR7Z392gHS/5oCEdAooDD8ejmCHV9lChoBkdAcVIAwPAfuGgHS+ZoCEdAooDWnEVFhHV9lChoBkdAcgdwRXfZVWgHS+9oCEdAooDVIbwSanV9lChoBkdAc28tihFmWmgHS9toCEdAooDdRWLgoHV9lChoBkdAcw56FuejEmgHS/FoCEdAooDhsl9jPXV9lChoBkdAc0LVjI7vHGgHS99oCEdAooDrTx5LRXV9lChoBkdAcKnHpbD/EWgHS9xoCEdAooGGVE/jbXV9lChoBkdAcOuCTEBKc2gHS+xoCEdAooGQBq9GqnV9lChoBkdAcM6xWT5ft2gHS/xoCEdAooJrFqBVdXV9lChoBkdAcxas2NvOyGgHS+xoCEdAooKNfw7T2HV9lChoBkdAcdDrzoUzsWgHS99oCEdAooKOGj9GZ3V9lChoBkdAcKkFbFCLM2gHS+9oCEdAooLT3fyf+XV9lChoBkdAcgQgMc6vJWgHS/1oCEdAooLwctGutHV9lChoBkdAceAQ9zOopGgHS9NoCEdAooNGrMkhR3V9lChoBkdAcR3Bu4wyqWgHS91oCEdAooQTWGyooHV9lChoBkdAbktlbu+h5GgHS91oCEdAooQuCsfaH3V9lChoBkdAcRLtq59Vm2gHS9loCEdAooRA9vCMxXV9lChoBkdAcFQgUDdP+GgHS+JoCEdAooRBaaCtinV9lChoBkdAci9D3ueBhGgHS9loCEdAooRQ6IWP93V9lChoBkdAca/WeYlY2mgHS99oCEdAooRViDujRHV9lChoBkdAcbyBxPwd82gHS+9oCEdAooSPBJqZdHV9lChoBkdActkDTSb6QGgHTQABaAhHQKKE1cAR02d1fZQoaAZHQHNmCa3I+4doB0vPaAhHQKKE7S0BwMp1fZQoaAZHQHDuF6qsEJVoB0vUaAhHQKKFBu3MINV1fZQoaAZHQG+Nad+XqqxoB0veaAhHQKKF9FH8TBZ1fZQoaAZHQG+y5VwPy09oB0vcaAhHQKKGDA0Kqn51fZQoaAZHQHHg6K+BYmtoB0vnaAhHQKKGOoBJZnt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |