Model save
Browse files
README.md
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
base_model: facebook/wav2vec2-base
|
4 |
tags:
|
5 |
-
- automatic-speech-recognition
|
6 |
-
- timit_asr
|
7 |
- generated_from_trainer
|
8 |
datasets:
|
9 |
- timit_asr
|
@@ -16,15 +13,15 @@ model-index:
|
|
16 |
name: Automatic Speech Recognition
|
17 |
type: automatic-speech-recognition
|
18 |
dataset:
|
19 |
-
name:
|
20 |
type: timit_asr
|
21 |
config: clean
|
22 |
split: test
|
23 |
-
args:
|
24 |
metrics:
|
25 |
- name: Wer
|
26 |
type: wer
|
27 |
-
value: 0.
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,10 +29,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
# wav2vec2-base-timit-fine-tuned
|
34 |
|
35 |
-
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the
|
36 |
It achieves the following results on the evaluation set:
|
37 |
-
- Loss: 0.
|
38 |
-
- Wer: 0.
|
39 |
|
40 |
## Model description
|
41 |
|
@@ -68,34 +65,34 @@ The following hyperparameters were used during training:
|
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
70 |
|:-------------:|:-------:|:----:|:---------------:|:------:|
|
71 |
-
| 3.
|
72 |
-
| 2.
|
73 |
-
| 2.
|
74 |
-
| 2.
|
75 |
-
| 1.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
|
95 |
|
96 |
### Framework versions
|
97 |
|
98 |
- Transformers 4.42.0.dev0
|
99 |
-
- Pytorch 2.3.
|
100 |
- Datasets 2.19.1
|
101 |
- Tokenizers 0.19.1
|
|
|
1 |
---
|
|
|
2 |
base_model: facebook/wav2vec2-base
|
3 |
tags:
|
|
|
|
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
- timit_asr
|
|
|
13 |
name: Automatic Speech Recognition
|
14 |
type: automatic-speech-recognition
|
15 |
dataset:
|
16 |
+
name: timit_asr
|
17 |
type: timit_asr
|
18 |
config: clean
|
19 |
split: test
|
20 |
+
args: clean
|
21 |
metrics:
|
22 |
- name: Wer
|
23 |
type: wer
|
24 |
+
value: 0.4087225712464718
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
29 |
|
30 |
# wav2vec2-base-timit-fine-tuned
|
31 |
|
32 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the timit_asr dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.4216
|
35 |
+
- Wer: 0.4087
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
67 |
|:-------------:|:-------:|:----:|:---------------:|:------:|
|
68 |
+
| 3.1612 | 0.8621 | 100 | 3.1181 | 1.0 |
|
69 |
+
| 2.978 | 1.7241 | 200 | 2.9722 | 1.0 |
|
70 |
+
| 2.9185 | 2.5862 | 300 | 2.9098 | 1.0 |
|
71 |
+
| 2.1282 | 3.4483 | 400 | 2.0066 | 1.0247 |
|
72 |
+
| 1.1234 | 4.3103 | 500 | 1.0197 | 0.8393 |
|
73 |
+
| 0.602 | 5.1724 | 600 | 0.6714 | 0.6600 |
|
74 |
+
| 0.5032 | 6.0345 | 700 | 0.5285 | 0.5659 |
|
75 |
+
| 0.3101 | 6.8966 | 800 | 0.4819 | 0.5282 |
|
76 |
+
| 0.3432 | 7.7586 | 900 | 0.4653 | 0.5272 |
|
77 |
+
| 0.1922 | 8.6207 | 1000 | 0.4672 | 0.4918 |
|
78 |
+
| 0.2284 | 9.4828 | 1100 | 0.4834 | 0.4870 |
|
79 |
+
| 0.1372 | 10.3448 | 1200 | 0.4380 | 0.4727 |
|
80 |
+
| 0.1105 | 11.2069 | 1300 | 0.4509 | 0.4594 |
|
81 |
+
| 0.0992 | 12.0690 | 1400 | 0.4196 | 0.4544 |
|
82 |
+
| 0.1226 | 12.9310 | 1500 | 0.4237 | 0.4321 |
|
83 |
+
| 0.1013 | 13.7931 | 1600 | 0.4113 | 0.4298 |
|
84 |
+
| 0.0661 | 14.6552 | 1700 | 0.4038 | 0.4276 |
|
85 |
+
| 0.0901 | 15.5172 | 1800 | 0.4321 | 0.4225 |
|
86 |
+
| 0.053 | 16.3793 | 1900 | 0.4076 | 0.4236 |
|
87 |
+
| 0.0805 | 17.2414 | 2000 | 0.4336 | 0.4156 |
|
88 |
+
| 0.049 | 18.1034 | 2100 | 0.4193 | 0.4114 |
|
89 |
+
| 0.0717 | 18.9655 | 2200 | 0.4139 | 0.4091 |
|
90 |
+
| 0.0389 | 19.8276 | 2300 | 0.4216 | 0.4087 |
|
91 |
|
92 |
|
93 |
### Framework versions
|
94 |
|
95 |
- Transformers 4.42.0.dev0
|
96 |
+
- Pytorch 2.3.0a0+git71dd2de
|
97 |
- Datasets 2.19.1
|
98 |
- Tokenizers 0.19.1
|