Model save
Browse files
README.md
CHANGED
@@ -1,26 +1,13 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
base_model:
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
-
datasets:
|
7 |
-
- tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
model-index:
|
11 |
- name: lmind_nq_train6000_eval6489_v1_docidx_v3_3e-5_lora2
|
12 |
-
results:
|
13 |
-
- task:
|
14 |
-
name: Causal Language Modeling
|
15 |
-
type: text-generation
|
16 |
-
dataset:
|
17 |
-
name: tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3
|
18 |
-
type: tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3
|
19 |
-
metrics:
|
20 |
-
- name: Accuracy
|
21 |
-
type: accuracy
|
22 |
-
value: 0.4105641025641026
|
23 |
-
library_name: peft
|
24 |
---
|
25 |
|
26 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -28,10 +15,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
28 |
|
29 |
# lmind_nq_train6000_eval6489_v1_docidx_v3_3e-5_lora2
|
30 |
|
31 |
-
This model is a fine-tuned version of [
|
32 |
It achieves the following results on the evaluation set:
|
33 |
-
- Loss:
|
34 |
-
- Accuracy: 0.
|
35 |
|
36 |
## Model description
|
37 |
|
@@ -51,12 +38,12 @@ More information needed
|
|
51 |
|
52 |
The following hyperparameters were used during training:
|
53 |
- learning_rate: 3e-05
|
54 |
-
- train_batch_size:
|
55 |
- eval_batch_size: 2
|
56 |
- seed: 42
|
57 |
- distributed_type: multi-GPU
|
58 |
- num_devices: 4
|
59 |
-
- gradient_accumulation_steps:
|
60 |
- total_train_batch_size: 32
|
61 |
- total_eval_batch_size: 8
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
@@ -66,64 +53,63 @@ The following hyperparameters were used during training:
|
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
-
| Training Loss | Epoch
|
70 |
-
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
| 1.
|
74 |
-
| 1.
|
75 |
-
| 1.
|
76 |
-
| 1.
|
77 |
-
| 1.
|
78 |
-
| 1.
|
79 |
-
| 1.
|
80 |
-
| 1.
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
|
|
89 |
-
|
|
90 |
-
|
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
|
122 |
|
123 |
### Framework versions
|
124 |
|
125 |
-
-
|
126 |
-
- Transformers 4.41.1
|
127 |
- Pytorch 2.1.0+cu121
|
128 |
-
- Datasets 2.
|
129 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
2 |
+
license: llama2
|
3 |
+
base_model: meta-llama/Llama-2-7b-hf
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
model-index:
|
9 |
- name: lmind_nq_train6000_eval6489_v1_docidx_v3_3e-5_lora2
|
10 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
15 |
|
16 |
# lmind_nq_train6000_eval6489_v1_docidx_v3_3e-5_lora2
|
17 |
|
18 |
+
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 4.9207
|
21 |
+
- Accuracy: 0.4310
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
38 |
|
39 |
The following hyperparameters were used during training:
|
40 |
- learning_rate: 3e-05
|
41 |
+
- train_batch_size: 2
|
42 |
- eval_batch_size: 2
|
43 |
- seed: 42
|
44 |
- distributed_type: multi-GPU
|
45 |
- num_devices: 4
|
46 |
+
- gradient_accumulation_steps: 4
|
47 |
- total_train_batch_size: 32
|
48 |
- total_eval_batch_size: 8
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
+
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|
57 |
+
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
|
58 |
+
| 1.4104 | 1.0 | 341 | 0.4537 | 3.3575 |
|
59 |
+
| 1.389 | 2.0 | 683 | 0.4544 | 3.4180 |
|
60 |
+
| 1.3414 | 3.0 | 1024 | 0.4548 | 3.5119 |
|
61 |
+
| 1.3002 | 4.0 | 1366 | 0.4554 | 3.5288 |
|
62 |
+
| 1.2574 | 5.0 | 1707 | 0.4539 | 3.6893 |
|
63 |
+
| 1.2258 | 6.0 | 2049 | 0.4562 | 3.7259 |
|
64 |
+
| 1.1844 | 7.0 | 2390 | 0.4559 | 3.7244 |
|
65 |
+
| 1.1363 | 8.0 | 2732 | 0.4544 | 3.8139 |
|
66 |
+
| 1.0903 | 9.0 | 3073 | 0.4524 | 3.9116 |
|
67 |
+
| 1.0538 | 10.0 | 3415 | 0.4516 | 3.9220 |
|
68 |
+
| 0.9971 | 11.0 | 3756 | 0.4514 | 3.9673 |
|
69 |
+
| 0.9699 | 12.0 | 4098 | 0.4508 | 4.0336 |
|
70 |
+
| 0.9235 | 13.0 | 4439 | 0.4493 | 4.0020 |
|
71 |
+
| 0.891 | 14.0 | 4781 | 0.4477 | 4.0716 |
|
72 |
+
| 0.845 | 15.0 | 5122 | 0.4477 | 4.0992 |
|
73 |
+
| 0.8009 | 16.0 | 5464 | 0.4464 | 4.0933 |
|
74 |
+
| 0.782 | 17.0 | 5805 | 0.4467 | 4.1283 |
|
75 |
+
| 0.7294 | 18.0 | 6147 | 0.4456 | 4.1643 |
|
76 |
+
| 0.6792 | 19.0 | 6488 | 0.4449 | 4.1859 |
|
77 |
+
| 0.6672 | 20.0 | 6830 | 0.4437 | 4.2010 |
|
78 |
+
| 0.6258 | 21.0 | 7171 | 0.4429 | 4.2300 |
|
79 |
+
| 0.599 | 22.0 | 7513 | 0.4419 | 4.2532 |
|
80 |
+
| 0.5625 | 23.0 | 7854 | 0.4430 | 4.2937 |
|
81 |
+
| 0.5267 | 24.0 | 8196 | 0.4415 | 4.2548 |
|
82 |
+
| 0.5004 | 25.0 | 8537 | 0.4404 | 4.3325 |
|
83 |
+
| 0.4681 | 26.0 | 8879 | 0.4396 | 4.3162 |
|
84 |
+
| 0.4453 | 27.0 | 9220 | 0.4388 | 4.3771 |
|
85 |
+
| 0.4161 | 28.0 | 9562 | 0.4386 | 4.4060 |
|
86 |
+
| 0.3994 | 29.0 | 9903 | 0.4377 | 4.4688 |
|
87 |
+
| 0.3695 | 30.0 | 10245 | 0.4377 | 4.4645 |
|
88 |
+
| 0.3505 | 31.0 | 10586 | 0.4378 | 4.4624 |
|
89 |
+
| 0.3342 | 32.0 | 10928 | 0.4365 | 4.4630 |
|
90 |
+
| 0.3075 | 33.0 | 11269 | 0.4342 | 4.5444 |
|
91 |
+
| 0.2949 | 34.0 | 11611 | 0.4344 | 4.5481 |
|
92 |
+
| 0.2705 | 35.0 | 11952 | 0.4357 | 4.5614 |
|
93 |
+
| 0.2554 | 36.0 | 12294 | 0.4339 | 4.5910 |
|
94 |
+
| 0.2428 | 37.0 | 12635 | 0.4332 | 4.6458 |
|
95 |
+
| 0.2277 | 38.0 | 12977 | 0.4327 | 4.6553 |
|
96 |
+
| 0.2172 | 39.0 | 13318 | 0.4328 | 4.7071 |
|
97 |
+
| 0.2016 | 40.0 | 13660 | 0.4331 | 4.7180 |
|
98 |
+
| 0.1965 | 41.0 | 14001 | 0.4323 | 4.7568 |
|
99 |
+
| 0.1851 | 42.0 | 14343 | 0.4321 | 4.7562 |
|
100 |
+
| 0.1739 | 43.0 | 14684 | 0.4317 | 4.7874 |
|
101 |
+
| 0.1719 | 44.0 | 15004 | 4.8029 | 0.4323 |
|
102 |
+
| 0.1626 | 45.0 | 15346 | 4.7820 | 0.4318 |
|
103 |
+
| 0.1535 | 46.0 | 15687 | 4.8637 | 0.4315 |
|
104 |
+
| 0.1524 | 47.0 | 16029 | 4.8990 | 0.4315 |
|
105 |
+
| 0.1419 | 48.0 | 16370 | 4.8602 | 0.4309 |
|
106 |
+
| 0.1405 | 49.0 | 16712 | 4.8813 | 0.4301 |
|
107 |
+
| 0.134 | 49.99 | 17050 | 4.9207 | 0.4310 |
|
108 |
|
109 |
|
110 |
### Framework versions
|
111 |
|
112 |
+
- Transformers 4.34.0
|
|
|
113 |
- Pytorch 2.1.0+cu121
|
114 |
+
- Datasets 2.18.0
|
115 |
+
- Tokenizers 0.14.1
|