Model save
Browse files
README.md
CHANGED
@@ -1,25 +1,14 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
base_model:
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
-
datasets:
|
7 |
-
- tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
model-index:
|
11 |
- name: lmind_hotpot_train8000_eval7405_v1_qa_5e-4_lora2
|
12 |
-
results:
|
13 |
-
|
14 |
-
name: Causal Language Modeling
|
15 |
-
type: text-generation
|
16 |
-
dataset:
|
17 |
-
name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
|
18 |
-
type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
|
19 |
-
metrics:
|
20 |
-
- name: Accuracy
|
21 |
-
type: accuracy
|
22 |
-
value: 0.5813164556962025
|
23 |
---
|
24 |
|
25 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -27,10 +16,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
27 |
|
28 |
# lmind_hotpot_train8000_eval7405_v1_qa_5e-4_lora2
|
29 |
|
30 |
-
This model is a fine-tuned version of [
|
31 |
It achieves the following results on the evaluation set:
|
32 |
-
- Loss:
|
33 |
-
- Accuracy: 0.
|
34 |
|
35 |
## Model description
|
36 |
|
@@ -61,37 +50,68 @@ The following hyperparameters were used during training:
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: constant
|
63 |
- lr_scheduler_warmup_ratio: 0.05
|
64 |
-
- num_epochs:
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
-
| Training Loss | Epoch | Step
|
69 |
-
|
70 |
-
|
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
|
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
|
92 |
### Framework versions
|
93 |
|
94 |
-
-
|
|
|
95 |
- Pytorch 2.1.0+cu121
|
96 |
-
- Datasets 2.
|
97 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: Qwen/Qwen1.5-4B
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
model-index:
|
9 |
- name: lmind_hotpot_train8000_eval7405_v1_qa_5e-4_lora2
|
10 |
+
results: []
|
11 |
+
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
16 |
|
17 |
# lmind_hotpot_train8000_eval7405_v1_qa_5e-4_lora2
|
18 |
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on an unknown dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 4.0366
|
22 |
+
- Accuracy: 0.4784
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: constant
|
52 |
- lr_scheduler_warmup_ratio: 0.05
|
53 |
+
- num_epochs: 50.0
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
59 |
+
| 2.2398 | 1.0 | 250 | 2.3236 | 0.5163 |
|
60 |
+
| 1.8301 | 2.0 | 500 | 2.4220 | 0.5124 |
|
61 |
+
| 1.3626 | 3.0 | 750 | 2.6153 | 0.5062 |
|
62 |
+
| 1.0112 | 4.0 | 1000 | 2.8349 | 0.4997 |
|
63 |
+
| 0.7198 | 5.0 | 1250 | 3.0756 | 0.4963 |
|
64 |
+
| 0.589 | 6.0 | 1500 | 3.2339 | 0.4943 |
|
65 |
+
| 0.4969 | 7.0 | 1750 | 3.3425 | 0.4935 |
|
66 |
+
| 0.4786 | 8.0 | 2000 | 3.4198 | 0.4924 |
|
67 |
+
| 0.4399 | 9.0 | 2250 | 3.4695 | 0.4911 |
|
68 |
+
| 0.4481 | 10.0 | 2500 | 3.5353 | 0.4913 |
|
69 |
+
| 0.4166 | 11.0 | 2750 | 3.4938 | 0.4894 |
|
70 |
+
| 0.429 | 12.0 | 3000 | 3.5450 | 0.4906 |
|
71 |
+
| 0.4193 | 13.0 | 3250 | 3.5636 | 0.4882 |
|
72 |
+
| 0.4276 | 14.0 | 3500 | 3.5626 | 0.4890 |
|
73 |
+
| 0.4071 | 15.0 | 3750 | 3.6309 | 0.4883 |
|
74 |
+
| 0.421 | 16.0 | 4000 | 3.5818 | 0.4890 |
|
75 |
+
| 0.4065 | 17.0 | 4250 | 3.6167 | 0.4869 |
|
76 |
+
| 0.4188 | 18.0 | 4500 | 3.6926 | 0.4857 |
|
77 |
+
| 0.3994 | 19.0 | 4750 | 3.6533 | 0.4863 |
|
78 |
+
| 0.4103 | 20.0 | 5000 | 3.6891 | 0.4864 |
|
79 |
+
| 0.397 | 21.0 | 5250 | 3.6973 | 0.4851 |
|
80 |
+
| 0.4118 | 22.0 | 5500 | 3.7214 | 0.4859 |
|
81 |
+
| 0.3944 | 23.0 | 5750 | 3.7193 | 0.4851 |
|
82 |
+
| 0.4036 | 24.0 | 6000 | 3.7567 | 0.4845 |
|
83 |
+
| 0.3939 | 25.0 | 6250 | 3.7891 | 0.4841 |
|
84 |
+
| 0.401 | 26.0 | 6500 | 3.7671 | 0.4828 |
|
85 |
+
| 0.3871 | 27.0 | 6750 | 3.7838 | 0.4835 |
|
86 |
+
| 0.4005 | 28.0 | 7000 | 3.8041 | 0.4831 |
|
87 |
+
| 0.3854 | 29.0 | 7250 | 3.8603 | 0.4830 |
|
88 |
+
| 0.3942 | 30.0 | 7500 | 3.8247 | 0.4812 |
|
89 |
+
| 0.3837 | 31.0 | 7750 | 3.8497 | 0.4815 |
|
90 |
+
| 0.3896 | 32.0 | 8000 | 3.8705 | 0.4836 |
|
91 |
+
| 0.3817 | 33.0 | 8250 | 3.8643 | 0.4818 |
|
92 |
+
| 0.3928 | 34.0 | 8500 | 3.9378 | 0.4807 |
|
93 |
+
| 0.3839 | 35.0 | 8750 | 3.9542 | 0.4810 |
|
94 |
+
| 0.3942 | 36.0 | 9000 | 3.9250 | 0.4806 |
|
95 |
+
| 0.381 | 37.0 | 9250 | 3.9220 | 0.4792 |
|
96 |
+
| 0.3918 | 38.0 | 9500 | 3.9584 | 0.4781 |
|
97 |
+
| 0.3787 | 39.0 | 9750 | 3.9241 | 0.4776 |
|
98 |
+
| 0.3897 | 40.0 | 10000 | 3.9434 | 0.4773 |
|
99 |
+
| 0.3786 | 41.0 | 10250 | 3.9411 | 0.4793 |
|
100 |
+
| 0.3864 | 42.0 | 10500 | 3.9933 | 0.4766 |
|
101 |
+
| 0.377 | 43.0 | 10750 | 4.0015 | 0.4787 |
|
102 |
+
| 0.3887 | 44.0 | 11000 | 3.9979 | 0.4788 |
|
103 |
+
| 0.3805 | 45.0 | 11250 | 3.9764 | 0.4796 |
|
104 |
+
| 0.3827 | 46.0 | 11500 | 3.9990 | 0.4786 |
|
105 |
+
| 0.3737 | 47.0 | 11750 | 4.0059 | 0.4792 |
|
106 |
+
| 0.3807 | 48.0 | 12000 | 4.0746 | 0.4798 |
|
107 |
+
| 0.3772 | 49.0 | 12250 | 4.0123 | 0.4776 |
|
108 |
+
| 0.3808 | 50.0 | 12500 | 4.0366 | 0.4784 |
|
109 |
|
110 |
|
111 |
### Framework versions
|
112 |
|
113 |
+
- PEFT 0.5.0
|
114 |
+
- Transformers 4.41.1
|
115 |
- Pytorch 2.1.0+cu121
|
116 |
+
- Datasets 2.19.1
|
117 |
+
- Tokenizers 0.19.1
|