update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- te_dx_jp
|
7 |
+
model-index:
|
8 |
+
- name: t5-base-TEDxJP-1body-10context
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# t5-base-TEDxJP-1body-10context
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3833
|
20 |
+
- Wer: 0.1983
|
21 |
+
- Mer: 0.1900
|
22 |
+
- Wil: 0.2778
|
23 |
+
- Wip: 0.7222
|
24 |
+
- Hits: 56229
|
25 |
+
- Substitutions: 6686
|
26 |
+
- Deletions: 3593
|
27 |
+
- Insertions: 2909
|
28 |
+
- Cer: 0.1823
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.0001
|
48 |
+
- train_batch_size: 64
|
49 |
+
- eval_batch_size: 8
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_ratio: 0.1
|
54 |
+
- num_epochs: 10
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:|
|
60 |
+
| 0.5641 | 1.0 | 746 | 0.4426 | 0.2336 | 0.2212 | 0.3143 | 0.6857 | 54711 | 7183 | 4614 | 3742 | 0.2238 |
|
61 |
+
| 0.4867 | 2.0 | 1492 | 0.4017 | 0.2045 | 0.1972 | 0.2863 | 0.7137 | 55378 | 6764 | 4366 | 2470 | 0.1853 |
|
62 |
+
| 0.4257 | 3.0 | 2238 | 0.3831 | 0.2008 | 0.1933 | 0.2826 | 0.7174 | 55715 | 6788 | 4005 | 2560 | 0.1784 |
|
63 |
+
| 0.4038 | 4.0 | 2984 | 0.3797 | 0.1963 | 0.1890 | 0.2776 | 0.7224 | 56028 | 6731 | 3749 | 2578 | 0.1748 |
|
64 |
+
| 0.3817 | 5.0 | 3730 | 0.3769 | 0.1944 | 0.1877 | 0.2758 | 0.7242 | 55926 | 6663 | 3919 | 2345 | 0.1730 |
|
65 |
+
| 0.3467 | 6.0 | 4476 | 0.3806 | 0.2111 | 0.2002 | 0.2876 | 0.7124 | 56082 | 6688 | 3738 | 3616 | 0.1916 |
|
66 |
+
| 0.3361 | 7.0 | 5222 | 0.3797 | 0.1977 | 0.1897 | 0.2780 | 0.7220 | 56173 | 6721 | 3614 | 2816 | 0.1785 |
|
67 |
+
| 0.3107 | 8.0 | 5968 | 0.3814 | 0.1993 | 0.1910 | 0.2792 | 0.7208 | 56167 | 6720 | 3621 | 2916 | 0.1839 |
|
68 |
+
| 0.3141 | 9.0 | 6714 | 0.3820 | 0.1991 | 0.1907 | 0.2787 | 0.7213 | 56201 | 6709 | 3598 | 2933 | 0.1859 |
|
69 |
+
| 0.3122 | 10.0 | 7460 | 0.3833 | 0.1983 | 0.1900 | 0.2778 | 0.7222 | 56229 | 6686 | 3593 | 2909 | 0.1823 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.12.5
|
75 |
+
- Pytorch 1.10.0+cu102
|
76 |
+
- Datasets 1.15.1
|
77 |
+
- Tokenizers 0.10.3
|