Darius-H commited on
Commit
d761eb1
1 Parent(s): dad8f21

First model version

Browse files
__init__.py ADDED
File without changes
__pycache__/test_model.cpython-39.pyc ADDED
Binary file (1.64 kB). View file
 
custom-mymodel/config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MyModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "test_model.MyModelConfig",
7
+ "AutoModel": "test_model.MyModel"
8
+ },
9
+ "input_dim": 10,
10
+ "layers_num": 3,
11
+ "torch_dtype": "float32",
12
+ "transformers_version": "4.24.0"
13
+ }
custom-mymodel/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3aaeadc87c87d041089e8ab0de07af2779cd0ff5952b2ecb477aa4301484f1f
3
+ size 7047
custom-mymodel/test_model.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PreTrainedModel
2
+ from transformers import PretrainedConfig
3
+ from typing import List
4
+ import torch.nn as nn
5
+ import torch
6
+
7
+
8
+ class MyModelConfig(PretrainedConfig):
9
+
10
+ def __init__(# 每个参数都必须带有默认值,否则会报错
11
+ self,
12
+ input_dim=100,
13
+ layers_num=5,
14
+ **kwargs,
15
+ ):
16
+ self.input_dim = input_dim
17
+ self.layers_num = layers_num
18
+ super().__init__(**kwargs)
19
+
20
+ class MyModel(PreTrainedModel):
21
+ config_class = MyModelConfig
22
+
23
+ def __init__(self, config):
24
+ super().__init__(config)
25
+ modules = []
26
+ assert config.layers_num >= 1
27
+ if config.layers_num == 1:
28
+ modules.append(nn.Linear(config.input_dim,1))
29
+ else:
30
+ modules.append(nn.Linear(config.input_dim,30))
31
+ for i in range(config.layers_num-2):
32
+ modules.append(nn.Linear(30,30))
33
+ modules.append(nn.Linear(30,1))
34
+ self.model = nn.ModuleList(modules)
35
+
36
+
37
+ def forward(self, tensor):
38
+ return self.model(tensor)
39
+
40
+ if __name__ == '__main__':
41
+ save_config = MyModelConfig(input_dim=10,layers_num=3)
42
+ save_config.save_pretrained("custom-mymodel")
43
+ mymodel = MyModel(save_config)
44
+ torch.save(mymodel.state_dict(),'pytorch_model.bin') # 通常以此命名
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f82694bb48a4c787f32362fc2fc6dda47b02bd6c690846a729c0c25cf196e459
3
+ size 7175
register.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from test_model import MyModelConfig,MyModel
3
+
4
+
5
+ MyModelConfig.register_for_auto_class()
6
+ MyModel.register_for_auto_class("AutoModel")
7
+ save_config = MyModelConfig(input_dim=10,layers_num=3)
8
+ save_config.save_pretrained("custom-mymodel")
9
+
10
+ mymodel = MyModel(save_config)
11
+ mymodel.load_state_dict(torch.load('pytorch_model.bin'))
12
+ mymodel.save_pretrained("custom-mymodel")
13
+
14
+ mymodel.push_to_hub("custom-mymodel_v1")
test_model.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PreTrainedModel
2
+ from transformers import PretrainedConfig
3
+ from typing import List
4
+ import torch.nn as nn
5
+ import torch
6
+
7
+
8
+ class MyModelConfig(PretrainedConfig):
9
+
10
+ def __init__(# 每个参数都必须带有默认值,否则会报错
11
+ self,
12
+ input_dim=100,
13
+ layers_num=5,
14
+ **kwargs,
15
+ ):
16
+ self.input_dim = input_dim
17
+ self.layers_num = layers_num
18
+ super().__init__(**kwargs)
19
+
20
+ class MyModel(PreTrainedModel):
21
+ config_class = MyModelConfig
22
+
23
+ def __init__(self, config):
24
+ super().__init__(config)
25
+ modules = []
26
+ assert config.layers_num >= 1
27
+ if config.layers_num == 1:
28
+ modules.append(nn.Linear(config.input_dim,1))
29
+ else:
30
+ modules.append(nn.Linear(config.input_dim,30))
31
+ for i in range(config.layers_num-2):
32
+ modules.append(nn.Linear(30,30))
33
+ modules.append(nn.Linear(30,1))
34
+ self.model = nn.ModuleList(modules)
35
+
36
+
37
+ def forward(self, tensor):
38
+ return self.model(tensor)
39
+
40
+ if __name__ == '__main__':
41
+ save_config = MyModelConfig(input_dim=10,layers_num=3)
42
+ save_config.save_pretrained("custom-mymodel")
43
+ mymodel = MyModel(save_config)
44
+ torch.save(mymodel.state_dict(),'pytorch_model.bin') # 通常以此命名