twosocksinoneshoe commited on
Commit
5f32bd8
1 Parent(s): b7685a7

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 273.99 +/- 23.49
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79c6c43d8670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79c6c43d8700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79c6c43d8790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79c6c43d8820>", "_build": "<function ActorCriticPolicy._build at 0x79c6c43d88b0>", "forward": "<function ActorCriticPolicy.forward at 0x79c6c43d8940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79c6c43d89d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79c6c43d8a60>", "_predict": "<function ActorCriticPolicy._predict at 0x79c6c43d8af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79c6c43d8b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79c6c43d8c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79c6c43d8ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79c6c4575040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716830915286731699, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOYV70UiI66w4/xN/oQ8DJJmCI6VHwMtwAAgD8AAIA/mqL+vBSEgLok6cE6XacHNuVkWjsLheG5AACAPwAAgD+ax2Y89rRpumZLLznVIcuzxPVNux7sSLgAAIA/AACAP02WNb6c5EM/3jiHPQXA1r6Pp8q9BrPJPQAAAAAAAAAA5r4CPr+PuD+NqL0+vxrFvjS7Fz56yws+AAAAAAAAAADGuA++3znIPrAAfz7CR7q+FXM6PaggET0AAAAAAAAAAAAoZLtTj7Q/tXwvviQnoLysFyM7knAMPAAAAAAAAAAAgN51vbg84rvNP089ADZSvUCeS715kjO9AACAPwAAgD+ax/i8ey6KuqlhBzpEYp40x81ROyCiGrkAAIA/AACAP80nyDwtKjA+CDR1vj1kSr5qTaq99cqOOwAAAAAAAAAAJqzHPZHotD8a4SI/hGApvuKV5jzOzos+AAAAAAAAAACaIuM8imS2P0LULj9k7O09adilvAEXH70AAAAAAAAAACYluz1M57Q/KrCEPsqC374kCvg9jg7BPQAAAAAAAAAAgBQmvVynYzvrh5Y9v8+Pvjupaj1WB+w8AAAAAAAAgD+aCfO64USOuvNeSzgyUgc0ERmTO4LaaLcAAIA/AACAP6DVfz5yIfc+vtFkvoUXpb4ZKEw+tjxDvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGdRdkz41xeMAWyUTegDjAF0lEdAkIyvYe1a4nV9lChoBkdAa4/a0QbuMWgHTZ8CaAhHQJCNptqHoHN1fZQoaAZHQHERH6qKgqVoB00XAmgIR0CQjbO7QLNOdX2UKGgGR0BzBUbGWD6FaAdNJwJoCEdAkI4x0lqrR3V9lChoBkdAbE0uez2OAGgHTUcBaAhHQJCPhy2hIvt1fZQoaAZHQGL6lF2FFlVoB03oA2gIR0CQk2t/WlMzdX2UKGgGR0BxzX9CNS62aAdNSAJoCEdAkJOEFB6a9nV9lChoBkdAb+wUGFBY3mgHTYMCaAhHQJCYV+uvECN1fZQoaAZHQFygQT238XNoB03oA2gIR0CQmWq6e5FxdX2UKGgGR0BxxGYJE6T4aAdNAgFoCEdAkJo6NQ0oB3V9lChoBkdAbv2PmxMWXWgHTXMDaAhHQJCa9sImgJ11fZQoaAZHQFmgDAJswcpoB03oA2gIR0CQnAdP+GXYdX2UKGgGR0BxnYScslLOaAdNoAFoCEdAkLJFWGRFJHV9lChoBkdAb0GbWEsasWgHTW4CaAhHQJCyWYUnG851fZQoaAZHQG/R1z6rNnpoB00FAWgIR0CQsmSSvC/HdX2UKGgGR0ByZhEd/8VIaAdNzQFoCEdAkLTE1IiC8XV9lChoBkdAcqju5z5oG2gHTcABaAhHQJC0xOqNp/R1fZQoaAZHQGZ4Kaw2VFBoB03oA2gIR0CQt/pg1FYudX2UKGgGR0BwzRW+49X+aAdNIgFoCEdAkLm23BpHqnV9lChoBkdAcP3JSBK+SWgHTV8BaAhHQJC6Y690zTF1fZQoaAZHQHBhs0+C9RJoB03pAWgIR0CQuwBIWgvldX2UKGgGR0ByWD4cm0E6aAdL5GgIR0CQuxUs4DLbdX2UKGgGR0Bw617/n4fwaAdNQAFoCEdAkL6vqxC6YnV9lChoBkdAcYEG4ZuQ62gHTdoBaAhHQJDAbfIjnmt1fZQoaAZHQHKgiZfD1oRoB011AWgIR0CQwPGViWmhdX2UKGgGR0Btq1irksBiaAdNOQFoCEdAkMEizollb3V9lChoBkdAcCpg0TDfnGgHTacDaAhHQJDBLA/LTx51fZQoaAZHQGI981O0svtoB03oA2gIR0CQw8+x4Y78dX2UKGgGR0BsqYd+5OJtaAdNxQNoCEdAkMUGhufmLnV9lChoBkdAbqutcv/R3WgHTScCaAhHQJDGEBo24ut1fZQoaAZHQHCGCOmzjWFoB01QAmgIR0CQxsdLQHAzdX2UKGgGR0BwFCWX1J18aAdNIAFoCEdAkMbSNOuaF3V9lChoBkdAcT57ngYP5GgHTbgBaAhHQJDJ1WgezUt1fZQoaAZHQHEJafzz3AVoB01uAWgIR0CQyf+98JD3dX2UKGgGR0BVyW6XjU/faAdN6ANoCEdAkMpLPhQ3xXV9lChoBkdAccgn0kGA1GgHS/1oCEdAkMqbo0Q9R3V9lChoBkdAcnDETg2qDWgHTbwBaAhHQJDMHvMKTjh1fZQoaAZHQHA9mqYJE6VoB03NAWgIR0CQzB03wTdtdX2UKGgGR0BxP+UyHmA9aAdNIgFoCEdAkMxTX8O09nV9lChoBkdAcYtKWszVMGgHTUYBaAhHQJDNviBGx2V1fZQoaAZHQHIYWX1J17poB02FAWgIR0CQzfRNATqTdX2UKGgGR0BwyEgMc6vJaAdNQAFoCEdAkM/v779AHHV9lChoBkdAbzOi35N47mgHTboBaAhHQJDR3jwQUYd1fZQoaAZHQHJp4nfEXLxoB01tAWgIR0CQ05f5k9U0dX2UKGgGR0Bu5qI1tO2zaAdNBAFoCEdAkNQCbMHKOnV9lChoBkdAb0D1ZkkKNWgHTW8DaAhHQJDXYUIsyzp1fZQoaAZHQHHdv9Hc1wZoB00vAWgIR0CQ2FVz6rNodX2UKGgGR0Bwji5z5oGqaAdNlgFoCEdAkO42nXNC7nV9lChoBkdAb9cZPVNHpmgHTSIBaAhHQJDuTHQyAQR1fZQoaAZHQG4/WnsLORloB00/AWgIR0CQ7zJHAh0RdX2UKGgGR0BwlI4ku6EraAdNJQJoCEdAkO893W4EwHV9lChoBkdAcfb+ocaOxWgHTYgBaAhHQJDwMQe3hGZ1fZQoaAZHQHIgFEVnEl5oB03WAWgIR0CQ8NhXbM5fdX2UKGgGR0ByXStA9mpVaAdNmQFoCEdAkPEJz90ihXV9lChoBkdAcKSjgAIY32gHTQMBaAhHQJDxQ7p3X7N1fZQoaAZHQHDmrfxc3VFoB0vxaAhHQJDydwZOzpp1fZQoaAZHQHEA/aURnOBoB012AWgIR0CQ83HPu5SWdX2UKGgGR0ByYYtZmqYJaAdL2WgIR0CQ9B2S+xnndX2UKGgGR0Bxojg75mAcaAdNUQJoCEdAkPVy/oJRfnV9lChoBkdAbFcKQ7tAs2gHS+ZoCEdAkPauAiFCcHV9lChoBkdAbjm5T6zmfWgHTX4BaAhHQJD3PqX4TK11fZQoaAZHQHDkoG+sYEZoB0v2aAhHQJD4KEtdzGR1fZQoaAZHQHOfGMwUQCloB00TAWgIR0CQ+FMjeKsNdX2UKGgGR0BxU7kU9IPLaAdL+2gIR0CQ+Tuh9LHudX2UKGgGR0BwRCY6XBxhaAdNDQFoCEdAkPqDz3AVPHV9lChoBkdAbey2CuloDmgHTUYDaAhHQJD7Ja3Zwn91fZQoaAZHQHAAEvCdjG1oB02aAWgIR0CQ+6lDF6zFdX2UKGgGR0BuAPRZ2ZAqaAdNXANoCEdAkPvheokzGnV9lChoBkdAcvxa5PM0QGgHTT4BaAhHQJD8RAgPmPp1fZQoaAZHQHK6f2K2rn1oB0v/aAhHQJD8dqagElp1fZQoaAZHQHE+2SZBsyloB00/AWgIR0CQ/HwqAjIJdX2UKGgGR0BuVVGd7OVxaAdNAQFoCEdAkPz9As052nV9lChoBkdAch7PeHi3omgHTZEBaAhHQJD9M5MlC1J1fZQoaAZHQHJjBVyWAwxoB00wAWgIR0CQ/0Cz1K5DdX2UKGgGR0BuQeE4//vOaAdNIAFoCEdAkQBSZfD1oXV9lChoBkdAcL/xQBPsRmgHTQ8BaAhHQJEAqmMwUQF1fZQoaAZHQHNttiQT239oB00tAWgIR0CRAXhDgIhRdX2UKGgGR0BzBaMhouf3aAdL8WgIR0CRAabXpW3jdX2UKGgGR0BwjshkiD/VaAdN8gFoCEdAkQLFxS5y2nV9lChoBkdAcCLsFMZgomgHS/poCEdAkQL/gWJrL3V9lChoBkdAcRbSWqtHQWgHTYsBaAhHQJEDLyd4FA51fZQoaAZHQHFDyZKFqSJoB00SAWgIR0CRA/PCVKPGdX2UKGgGR0Bwqz1PFefJaAdNEQFoCEdAkQSQ/1QIlnV9lChoBkdAcCkMqjJuEWgHTQIBaAhHQJEE+VQhwER1fZQoaAZHQHBO+KsMiKRoB01eAWgIR0CRBY5DZ13ddX2UKGgGR0BwFirdWQwLaAdNPQFoCEdAkQZ7csUZenV9lChoBkdAcidYxtYSx2gHS+poCEdAkQaC/CZWrHV9lChoBkdAceCiAlOXV2gHTcwBaAhHQJEHLl1bJOp1fZQoaAZHQHJXXuuzQeFoB02EAWgIR0CRB7A0sOG1dX2UKGgGR0BxsMXj2i+MaAdNIQFoCEdAkQju/xlQM3V9lChoBkdAcMnuYx+KCWgHTR8BaAhHQJEJOO1fE4x1fZQoaAZHQHDVt/J/5L1oB0vlaAhHQJEK8W0qpcZ1fZQoaAZHQHFMe1a4c3loB008AWgIR0CRC5GtITXbdX2UKGgGR0BxXWTKT0QLaAdL9GgIR0CRDUisGPgfdX2UKGgGR0Bw+f+6y0KJaAdNQgFoCEdAkQ2iJbdJrnV9lChoBkdAcBsfu1F6RmgHTWYBaAhHQJEQAl7dBSl1fZQoaAZHQG6uwCjk+5hoB006AWgIR0CREBIvalDXdX2UKGgGR0Bx5SUX531SaAdNDAFoCEdAkRDzSgGr0nV9lChoBkdAcetLORkmQmgHTTYBaAhHQJERdJ7LMcJ1fZQoaAZHQHErink1dgRoB029AWgIR0CREY9fkWAPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a44087e1e77df2065ca9b0eefb89a3fe3dc8dd75dc003441efd9cabc235ba57a
3
+ size 148069
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79c6c43d8670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79c6c43d8700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79c6c43d8790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79c6c43d8820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79c6c43d88b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79c6c43d8940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79c6c43d89d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79c6c43d8a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79c6c43d8af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79c6c43d8b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79c6c43d8c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79c6c43d8ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x79c6c4575040>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1716830915286731699,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOYV70UiI66w4/xN/oQ8DJJmCI6VHwMtwAAgD8AAIA/mqL+vBSEgLok6cE6XacHNuVkWjsLheG5AACAPwAAgD+ax2Y89rRpumZLLznVIcuzxPVNux7sSLgAAIA/AACAP02WNb6c5EM/3jiHPQXA1r6Pp8q9BrPJPQAAAAAAAAAA5r4CPr+PuD+NqL0+vxrFvjS7Fz56yws+AAAAAAAAAADGuA++3znIPrAAfz7CR7q+FXM6PaggET0AAAAAAAAAAAAoZLtTj7Q/tXwvviQnoLysFyM7knAMPAAAAAAAAAAAgN51vbg84rvNP089ADZSvUCeS715kjO9AACAPwAAgD+ax/i8ey6KuqlhBzpEYp40x81ROyCiGrkAAIA/AACAP80nyDwtKjA+CDR1vj1kSr5qTaq99cqOOwAAAAAAAAAAJqzHPZHotD8a4SI/hGApvuKV5jzOzos+AAAAAAAAAACaIuM8imS2P0LULj9k7O09adilvAEXH70AAAAAAAAAACYluz1M57Q/KrCEPsqC374kCvg9jg7BPQAAAAAAAAAAgBQmvVynYzvrh5Y9v8+Pvjupaj1WB+w8AAAAAAAAgD+aCfO64USOuvNeSzgyUgc0ERmTO4LaaLcAAIA/AACAP6DVfz5yIfc+vtFkvoUXpb4ZKEw+tjxDvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGdRdkz41xeMAWyUTegDjAF0lEdAkIyvYe1a4nV9lChoBkdAa4/a0QbuMWgHTZ8CaAhHQJCNptqHoHN1fZQoaAZHQHERH6qKgqVoB00XAmgIR0CQjbO7QLNOdX2UKGgGR0BzBUbGWD6FaAdNJwJoCEdAkI4x0lqrR3V9lChoBkdAbE0uez2OAGgHTUcBaAhHQJCPhy2hIvt1fZQoaAZHQGL6lF2FFlVoB03oA2gIR0CQk2t/WlMzdX2UKGgGR0BxzX9CNS62aAdNSAJoCEdAkJOEFB6a9nV9lChoBkdAb+wUGFBY3mgHTYMCaAhHQJCYV+uvECN1fZQoaAZHQFygQT238XNoB03oA2gIR0CQmWq6e5FxdX2UKGgGR0BxxGYJE6T4aAdNAgFoCEdAkJo6NQ0oB3V9lChoBkdAbv2PmxMWXWgHTXMDaAhHQJCa9sImgJ11fZQoaAZHQFmgDAJswcpoB03oA2gIR0CQnAdP+GXYdX2UKGgGR0BxnYScslLOaAdNoAFoCEdAkLJFWGRFJHV9lChoBkdAb0GbWEsasWgHTW4CaAhHQJCyWYUnG851fZQoaAZHQG/R1z6rNnpoB00FAWgIR0CQsmSSvC/HdX2UKGgGR0ByZhEd/8VIaAdNzQFoCEdAkLTE1IiC8XV9lChoBkdAcqju5z5oG2gHTcABaAhHQJC0xOqNp/R1fZQoaAZHQGZ4Kaw2VFBoB03oA2gIR0CQt/pg1FYudX2UKGgGR0BwzRW+49X+aAdNIgFoCEdAkLm23BpHqnV9lChoBkdAcP3JSBK+SWgHTV8BaAhHQJC6Y690zTF1fZQoaAZHQHBhs0+C9RJoB03pAWgIR0CQuwBIWgvldX2UKGgGR0ByWD4cm0E6aAdL5GgIR0CQuxUs4DLbdX2UKGgGR0Bw617/n4fwaAdNQAFoCEdAkL6vqxC6YnV9lChoBkdAcYEG4ZuQ62gHTdoBaAhHQJDAbfIjnmt1fZQoaAZHQHKgiZfD1oRoB011AWgIR0CQwPGViWmhdX2UKGgGR0Btq1irksBiaAdNOQFoCEdAkMEizollb3V9lChoBkdAcCpg0TDfnGgHTacDaAhHQJDBLA/LTx51fZQoaAZHQGI981O0svtoB03oA2gIR0CQw8+x4Y78dX2UKGgGR0BsqYd+5OJtaAdNxQNoCEdAkMUGhufmLnV9lChoBkdAbqutcv/R3WgHTScCaAhHQJDGEBo24ut1fZQoaAZHQHCGCOmzjWFoB01QAmgIR0CQxsdLQHAzdX2UKGgGR0BwFCWX1J18aAdNIAFoCEdAkMbSNOuaF3V9lChoBkdAcT57ngYP5GgHTbgBaAhHQJDJ1WgezUt1fZQoaAZHQHEJafzz3AVoB01uAWgIR0CQyf+98JD3dX2UKGgGR0BVyW6XjU/faAdN6ANoCEdAkMpLPhQ3xXV9lChoBkdAccgn0kGA1GgHS/1oCEdAkMqbo0Q9R3V9lChoBkdAcnDETg2qDWgHTbwBaAhHQJDMHvMKTjh1fZQoaAZHQHA9mqYJE6VoB03NAWgIR0CQzB03wTdtdX2UKGgGR0BxP+UyHmA9aAdNIgFoCEdAkMxTX8O09nV9lChoBkdAcYtKWszVMGgHTUYBaAhHQJDNviBGx2V1fZQoaAZHQHIYWX1J17poB02FAWgIR0CQzfRNATqTdX2UKGgGR0BwyEgMc6vJaAdNQAFoCEdAkM/v779AHHV9lChoBkdAbzOi35N47mgHTboBaAhHQJDR3jwQUYd1fZQoaAZHQHJp4nfEXLxoB01tAWgIR0CQ05f5k9U0dX2UKGgGR0Bu5qI1tO2zaAdNBAFoCEdAkNQCbMHKOnV9lChoBkdAb0D1ZkkKNWgHTW8DaAhHQJDXYUIsyzp1fZQoaAZHQHHdv9Hc1wZoB00vAWgIR0CQ2FVz6rNodX2UKGgGR0Bwji5z5oGqaAdNlgFoCEdAkO42nXNC7nV9lChoBkdAb9cZPVNHpmgHTSIBaAhHQJDuTHQyAQR1fZQoaAZHQG4/WnsLORloB00/AWgIR0CQ7zJHAh0RdX2UKGgGR0BwlI4ku6EraAdNJQJoCEdAkO893W4EwHV9lChoBkdAcfb+ocaOxWgHTYgBaAhHQJDwMQe3hGZ1fZQoaAZHQHIgFEVnEl5oB03WAWgIR0CQ8NhXbM5fdX2UKGgGR0ByXStA9mpVaAdNmQFoCEdAkPEJz90ihXV9lChoBkdAcKSjgAIY32gHTQMBaAhHQJDxQ7p3X7N1fZQoaAZHQHDmrfxc3VFoB0vxaAhHQJDydwZOzpp1fZQoaAZHQHEA/aURnOBoB012AWgIR0CQ83HPu5SWdX2UKGgGR0ByYYtZmqYJaAdL2WgIR0CQ9B2S+xnndX2UKGgGR0Bxojg75mAcaAdNUQJoCEdAkPVy/oJRfnV9lChoBkdAbFcKQ7tAs2gHS+ZoCEdAkPauAiFCcHV9lChoBkdAbjm5T6zmfWgHTX4BaAhHQJD3PqX4TK11fZQoaAZHQHDkoG+sYEZoB0v2aAhHQJD4KEtdzGR1fZQoaAZHQHOfGMwUQCloB00TAWgIR0CQ+FMjeKsNdX2UKGgGR0BxU7kU9IPLaAdL+2gIR0CQ+Tuh9LHudX2UKGgGR0BwRCY6XBxhaAdNDQFoCEdAkPqDz3AVPHV9lChoBkdAbey2CuloDmgHTUYDaAhHQJD7Ja3Zwn91fZQoaAZHQHAAEvCdjG1oB02aAWgIR0CQ+6lDF6zFdX2UKGgGR0BuAPRZ2ZAqaAdNXANoCEdAkPvheokzGnV9lChoBkdAcvxa5PM0QGgHTT4BaAhHQJD8RAgPmPp1fZQoaAZHQHK6f2K2rn1oB0v/aAhHQJD8dqagElp1fZQoaAZHQHE+2SZBsyloB00/AWgIR0CQ/HwqAjIJdX2UKGgGR0BuVVGd7OVxaAdNAQFoCEdAkPz9As052nV9lChoBkdAch7PeHi3omgHTZEBaAhHQJD9M5MlC1J1fZQoaAZHQHJjBVyWAwxoB00wAWgIR0CQ/0Cz1K5DdX2UKGgGR0BuQeE4//vOaAdNIAFoCEdAkQBSZfD1oXV9lChoBkdAcL/xQBPsRmgHTQ8BaAhHQJEAqmMwUQF1fZQoaAZHQHNttiQT239oB00tAWgIR0CRAXhDgIhRdX2UKGgGR0BzBaMhouf3aAdL8WgIR0CRAabXpW3jdX2UKGgGR0BwjshkiD/VaAdN8gFoCEdAkQLFxS5y2nV9lChoBkdAcCLsFMZgomgHS/poCEdAkQL/gWJrL3V9lChoBkdAcRbSWqtHQWgHTYsBaAhHQJEDLyd4FA51fZQoaAZHQHFDyZKFqSJoB00SAWgIR0CRA/PCVKPGdX2UKGgGR0Bwqz1PFefJaAdNEQFoCEdAkQSQ/1QIlnV9lChoBkdAcCkMqjJuEWgHTQIBaAhHQJEE+VQhwER1fZQoaAZHQHBO+KsMiKRoB01eAWgIR0CRBY5DZ13ddX2UKGgGR0BwFirdWQwLaAdNPQFoCEdAkQZ7csUZenV9lChoBkdAcidYxtYSx2gHS+poCEdAkQaC/CZWrHV9lChoBkdAceCiAlOXV2gHTcwBaAhHQJEHLl1bJOp1fZQoaAZHQHJXXuuzQeFoB02EAWgIR0CRB7A0sOG1dX2UKGgGR0BxsMXj2i+MaAdNIQFoCEdAkQju/xlQM3V9lChoBkdAcMnuYx+KCWgHTR8BaAhHQJEJOO1fE4x1fZQoaAZHQHDVt/J/5L1oB0vlaAhHQJEK8W0qpcZ1fZQoaAZHQHFMe1a4c3loB008AWgIR0CRC5GtITXbdX2UKGgGR0BxXWTKT0QLaAdL9GgIR0CRDUisGPgfdX2UKGgGR0Bw+f+6y0KJaAdNQgFoCEdAkQ2iJbdJrnV9lChoBkdAcBsfu1F6RmgHTWYBaAhHQJEQAl7dBSl1fZQoaAZHQG6uwCjk+5hoB006AWgIR0CREBIvalDXdX2UKGgGR0Bx5SUX531SaAdNDAFoCEdAkRDzSgGr0nV9lChoBkdAcetLORkmQmgHTTYBaAhHQJERdJ7LMcJ1fZQoaAZHQHErink1dgRoB029AWgIR0CREY9fkWAPdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 496,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 8,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a37a44777cdadbe1ab0bef3e146daaabd7c4f353de0502ed21c98230ba8ab2ef
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b0f3abad8fb82844ed28c507f07988a9253d419955d0d6d190002bb33b8ebf7
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (171 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 273.9928470753008, "std_reward": 23.49303653879817, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-27T17:52:34.627336"}