Remove inference lite files.
Browse files- onediffusion/LICENSE +0 -407
- onediffusion/__init__.py +0 -0
- onediffusion/dataset/__init__.py +0 -0
- onediffusion/dataset/utils.py +0 -175
- onediffusion/nextdit/__init__.py +0 -0
- onediffusion/nextdit/layers.py +0 -128
- onediffusion/nextdit/modeling_nextdit.py +0 -482
- onediffusion/pipeline/__init__.py +0 -0
- onediffusion/pipeline/image_processor.py +0 -672
- onediffusion/pipeline/onediffusion.py +0 -1079
onediffusion/LICENSE
DELETED
@@ -1,407 +0,0 @@
|
|
1 |
-
Attribution-NonCommercial 4.0 International
|
2 |
-
|
3 |
-
=======================================================================
|
4 |
-
|
5 |
-
Creative Commons Corporation ("Creative Commons") is not a law firm and
|
6 |
-
does not provide legal services or legal advice. Distribution of
|
7 |
-
Creative Commons public licenses does not create a lawyer-client or
|
8 |
-
other relationship. Creative Commons makes its licenses and related
|
9 |
-
information available on an "as-is" basis. Creative Commons gives no
|
10 |
-
warranties regarding its licenses, any material licensed under their
|
11 |
-
terms and conditions, or any related information. Creative Commons
|
12 |
-
disclaims all liability for damages resulting from their use to the
|
13 |
-
fullest extent possible.
|
14 |
-
|
15 |
-
Using Creative Commons Public Licenses
|
16 |
-
|
17 |
-
Creative Commons public licenses provide a standard set of terms and
|
18 |
-
conditions that creators and other rights holders may use to share
|
19 |
-
original works of authorship and other material subject to copyright
|
20 |
-
and certain other rights specified in the public license below. The
|
21 |
-
following considerations are for informational purposes only, are not
|
22 |
-
exhaustive, and do not form part of our licenses.
|
23 |
-
|
24 |
-
Considerations for licensors: Our public licenses are
|
25 |
-
intended for use by those authorized to give the public
|
26 |
-
permission to use material in ways otherwise restricted by
|
27 |
-
copyright and certain other rights. Our licenses are
|
28 |
-
irrevocable. Licensors should read and understand the terms
|
29 |
-
and conditions of the license they choose before applying it.
|
30 |
-
Licensors should also secure all rights necessary before
|
31 |
-
applying our licenses so that the public can reuse the
|
32 |
-
material as expected. Licensors should clearly mark any
|
33 |
-
material not subject to the license. This includes other CC-
|
34 |
-
licensed material, or material used under an exception or
|
35 |
-
limitation to copyright. More considerations for licensors:
|
36 |
-
wiki.creativecommons.org/Considerations_for_licensors
|
37 |
-
|
38 |
-
Considerations for the public: By using one of our public
|
39 |
-
licenses, a licensor grants the public permission to use the
|
40 |
-
licensed material under specified terms and conditions. If
|
41 |
-
the licensor's permission is not necessary for any reason--for
|
42 |
-
example, because of any applicable exception or limitation to
|
43 |
-
copyright--then that use is not regulated by the license. Our
|
44 |
-
licenses grant only permissions under copyright and certain
|
45 |
-
other rights that a licensor has authority to grant. Use of
|
46 |
-
the licensed material may still be restricted for other
|
47 |
-
reasons, including because others have copyright or other
|
48 |
-
rights in the material. A licensor may make special requests,
|
49 |
-
such as asking that all changes be marked or described.
|
50 |
-
Although not required by our licenses, you are encouraged to
|
51 |
-
respect those requests where reasonable. More considerations
|
52 |
-
for the public:
|
53 |
-
wiki.creativecommons.org/Considerations_for_licensees
|
54 |
-
|
55 |
-
=======================================================================
|
56 |
-
|
57 |
-
Creative Commons Attribution-NonCommercial 4.0 International Public
|
58 |
-
License
|
59 |
-
|
60 |
-
By exercising the Licensed Rights (defined below), You accept and agree
|
61 |
-
to be bound by the terms and conditions of this Creative Commons
|
62 |
-
Attribution-NonCommercial 4.0 International Public License ("Public
|
63 |
-
License"). To the extent this Public License may be interpreted as a
|
64 |
-
contract, You are granted the Licensed Rights in consideration of Your
|
65 |
-
acceptance of these terms and conditions, and the Licensor grants You
|
66 |
-
such rights in consideration of benefits the Licensor receives from
|
67 |
-
making the Licensed Material available under these terms and
|
68 |
-
conditions.
|
69 |
-
|
70 |
-
|
71 |
-
Section 1 -- Definitions.
|
72 |
-
|
73 |
-
a. Adapted Material means material subject to Copyright and Similar
|
74 |
-
Rights that is derived from or based upon the Licensed Material
|
75 |
-
and in which the Licensed Material is translated, altered,
|
76 |
-
arranged, transformed, or otherwise modified in a manner requiring
|
77 |
-
permission under the Copyright and Similar Rights held by the
|
78 |
-
Licensor. For purposes of this Public License, where the Licensed
|
79 |
-
Material is a musical work, performance, or sound recording,
|
80 |
-
Adapted Material is always produced where the Licensed Material is
|
81 |
-
synched in timed relation with a moving image.
|
82 |
-
|
83 |
-
b. Adapter's License means the license You apply to Your Copyright
|
84 |
-
and Similar Rights in Your contributions to Adapted Material in
|
85 |
-
accordance with the terms and conditions of this Public License.
|
86 |
-
|
87 |
-
c. Copyright and Similar Rights means copyright and/or similar rights
|
88 |
-
closely related to copyright including, without limitation,
|
89 |
-
performance, broadcast, sound recording, and Sui Generis Database
|
90 |
-
Rights, without regard to how the rights are labeled or
|
91 |
-
categorized. For purposes of this Public License, the rights
|
92 |
-
specified in Section 2(b)(1)-(2) are not Copyright and Similar
|
93 |
-
Rights.
|
94 |
-
d. Effective Technological Measures means those measures that, in the
|
95 |
-
absence of proper authority, may not be circumvented under laws
|
96 |
-
fulfilling obligations under Article 11 of the WIPO Copyright
|
97 |
-
Treaty adopted on December 20, 1996, and/or similar international
|
98 |
-
agreements.
|
99 |
-
|
100 |
-
e. Exceptions and Limitations means fair use, fair dealing, and/or
|
101 |
-
any other exception or limitation to Copyright and Similar Rights
|
102 |
-
that applies to Your use of the Licensed Material.
|
103 |
-
|
104 |
-
f. Licensed Material means the artistic or literary work, database,
|
105 |
-
or other material to which the Licensor applied this Public
|
106 |
-
License.
|
107 |
-
|
108 |
-
g. Licensed Rights means the rights granted to You subject to the
|
109 |
-
terms and conditions of this Public License, which are limited to
|
110 |
-
all Copyright and Similar Rights that apply to Your use of the
|
111 |
-
Licensed Material and that the Licensor has authority to license.
|
112 |
-
|
113 |
-
h. Licensor means the individual(s) or entity(ies) granting rights
|
114 |
-
under this Public License.
|
115 |
-
|
116 |
-
i. NonCommercial means not primarily intended for or directed towards
|
117 |
-
commercial advantage or monetary compensation. For purposes of
|
118 |
-
this Public License, the exchange of the Licensed Material for
|
119 |
-
other material subject to Copyright and Similar Rights by digital
|
120 |
-
file-sharing or similar means is NonCommercial provided there is
|
121 |
-
no payment of monetary compensation in connection with the
|
122 |
-
exchange.
|
123 |
-
|
124 |
-
j. Share means to provide material to the public by any means or
|
125 |
-
process that requires permission under the Licensed Rights, such
|
126 |
-
as reproduction, public display, public performance, distribution,
|
127 |
-
dissemination, communication, or importation, and to make material
|
128 |
-
available to the public including in ways that members of the
|
129 |
-
public may access the material from a place and at a time
|
130 |
-
individually chosen by them.
|
131 |
-
|
132 |
-
k. Sui Generis Database Rights means rights other than copyright
|
133 |
-
resulting from Directive 96/9/EC of the European Parliament and of
|
134 |
-
the Council of 11 March 1996 on the legal protection of databases,
|
135 |
-
as amended and/or succeeded, as well as other essentially
|
136 |
-
equivalent rights anywhere in the world.
|
137 |
-
|
138 |
-
l. You means the individual or entity exercising the Licensed Rights
|
139 |
-
under this Public License. Your has a corresponding meaning.
|
140 |
-
|
141 |
-
|
142 |
-
Section 2 -- Scope.
|
143 |
-
|
144 |
-
a. License grant.
|
145 |
-
|
146 |
-
1. Subject to the terms and conditions of this Public License,
|
147 |
-
the Licensor hereby grants You a worldwide, royalty-free,
|
148 |
-
non-sublicensable, non-exclusive, irrevocable license to
|
149 |
-
exercise the Licensed Rights in the Licensed Material to:
|
150 |
-
|
151 |
-
a. reproduce and Share the Licensed Material, in whole or
|
152 |
-
in part, for NonCommercial purposes only; and
|
153 |
-
|
154 |
-
b. produce, reproduce, and Share Adapted Material for
|
155 |
-
NonCommercial purposes only.
|
156 |
-
|
157 |
-
2. Exceptions and Limitations. For the avoidance of doubt, where
|
158 |
-
Exceptions and Limitations apply to Your use, this Public
|
159 |
-
License does not apply, and You do not need to comply with
|
160 |
-
its terms and conditions.
|
161 |
-
|
162 |
-
3. Term. The term of this Public License is specified in Section
|
163 |
-
6(a).
|
164 |
-
|
165 |
-
4. Media and formats; technical modifications allowed. The
|
166 |
-
Licensor authorizes You to exercise the Licensed Rights in
|
167 |
-
all media and formats whether now known or hereafter created,
|
168 |
-
and to make technical modifications necessary to do so. The
|
169 |
-
Licensor waives and/or agrees not to assert any right or
|
170 |
-
authority to forbid You from making technical modifications
|
171 |
-
necessary to exercise the Licensed Rights, including
|
172 |
-
technical modifications necessary to circumvent Effective
|
173 |
-
Technological Measures. For purposes of this Public License,
|
174 |
-
simply making modifications authorized by this Section 2(a)
|
175 |
-
(4) never produces Adapted Material.
|
176 |
-
|
177 |
-
5. Downstream recipients.
|
178 |
-
|
179 |
-
a. Offer from the Licensor -- Licensed Material. Every
|
180 |
-
recipient of the Licensed Material automatically
|
181 |
-
receives an offer from the Licensor to exercise the
|
182 |
-
Licensed Rights under the terms and conditions of this
|
183 |
-
Public License.
|
184 |
-
|
185 |
-
b. No downstream restrictions. You may not offer or impose
|
186 |
-
any additional or different terms or conditions on, or
|
187 |
-
apply any Effective Technological Measures to, the
|
188 |
-
Licensed Material if doing so restricts exercise of the
|
189 |
-
Licensed Rights by any recipient of the Licensed
|
190 |
-
Material.
|
191 |
-
|
192 |
-
6. No endorsement. Nothing in this Public License constitutes or
|
193 |
-
may be construed as permission to assert or imply that You
|
194 |
-
are, or that Your use of the Licensed Material is, connected
|
195 |
-
with, or sponsored, endorsed, or granted official status by,
|
196 |
-
the Licensor or others designated to receive attribution as
|
197 |
-
provided in Section 3(a)(1)(A)(i).
|
198 |
-
|
199 |
-
b. Other rights.
|
200 |
-
|
201 |
-
1. Moral rights, such as the right of integrity, are not
|
202 |
-
licensed under this Public License, nor are publicity,
|
203 |
-
privacy, and/or other similar personality rights; however, to
|
204 |
-
the extent possible, the Licensor waives and/or agrees not to
|
205 |
-
assert any such rights held by the Licensor to the limited
|
206 |
-
extent necessary to allow You to exercise the Licensed
|
207 |
-
Rights, but not otherwise.
|
208 |
-
|
209 |
-
2. Patent and trademark rights are not licensed under this
|
210 |
-
Public License.
|
211 |
-
|
212 |
-
3. To the extent possible, the Licensor waives any right to
|
213 |
-
collect royalties from You for the exercise of the Licensed
|
214 |
-
Rights, whether directly or through a collecting society
|
215 |
-
under any voluntary or waivable statutory or compulsory
|
216 |
-
licensing scheme. In all other cases the Licensor expressly
|
217 |
-
reserves any right to collect such royalties, including when
|
218 |
-
the Licensed Material is used other than for NonCommercial
|
219 |
-
purposes.
|
220 |
-
|
221 |
-
|
222 |
-
Section 3 -- License Conditions.
|
223 |
-
|
224 |
-
Your exercise of the Licensed Rights is expressly made subject to the
|
225 |
-
following conditions.
|
226 |
-
|
227 |
-
a. Attribution.
|
228 |
-
|
229 |
-
1. If You Share the Licensed Material (including in modified
|
230 |
-
form), You must:
|
231 |
-
|
232 |
-
a. retain the following if it is supplied by the Licensor
|
233 |
-
with the Licensed Material:
|
234 |
-
|
235 |
-
i. identification of the creator(s) of the Licensed
|
236 |
-
Material and any others designated to receive
|
237 |
-
attribution, in any reasonable manner requested by
|
238 |
-
the Licensor (including by pseudonym if
|
239 |
-
designated);
|
240 |
-
|
241 |
-
ii. a copyright notice;
|
242 |
-
|
243 |
-
iii. a notice that refers to this Public License;
|
244 |
-
|
245 |
-
iv. a notice that refers to the disclaimer of
|
246 |
-
warranties;
|
247 |
-
|
248 |
-
v. a URI or hyperlink to the Licensed Material to the
|
249 |
-
extent reasonably practicable;
|
250 |
-
|
251 |
-
b. indicate if You modified the Licensed Material and
|
252 |
-
retain an indication of any previous modifications; and
|
253 |
-
|
254 |
-
c. indicate the Licensed Material is licensed under this
|
255 |
-
Public License, and include the text of, or the URI or
|
256 |
-
hyperlink to, this Public License.
|
257 |
-
|
258 |
-
2. You may satisfy the conditions in Section 3(a)(1) in any
|
259 |
-
reasonable manner based on the medium, means, and context in
|
260 |
-
which You Share the Licensed Material. For example, it may be
|
261 |
-
reasonable to satisfy the conditions by providing a URI or
|
262 |
-
hyperlink to a resource that includes the required
|
263 |
-
information.
|
264 |
-
|
265 |
-
3. If requested by the Licensor, You must remove any of the
|
266 |
-
information required by Section 3(a)(1)(A) to the extent
|
267 |
-
reasonably practicable.
|
268 |
-
|
269 |
-
4. If You Share Adapted Material You produce, the Adapter's
|
270 |
-
License You apply must not prevent recipients of the Adapted
|
271 |
-
Material from complying with this Public License.
|
272 |
-
|
273 |
-
|
274 |
-
Section 4 -- Sui Generis Database Rights.
|
275 |
-
|
276 |
-
Where the Licensed Rights include Sui Generis Database Rights that
|
277 |
-
apply to Your use of the Licensed Material:
|
278 |
-
|
279 |
-
a. for the avoidance of doubt, Section 2(a)(1) grants You the right
|
280 |
-
to extract, reuse, reproduce, and Share all or a substantial
|
281 |
-
portion of the contents of the database for NonCommercial purposes
|
282 |
-
only;
|
283 |
-
|
284 |
-
b. if You include all or a substantial portion of the database
|
285 |
-
contents in a database in which You have Sui Generis Database
|
286 |
-
Rights, then the database in which You have Sui Generis Database
|
287 |
-
Rights (but not its individual contents) is Adapted Material; and
|
288 |
-
|
289 |
-
c. You must comply with the conditions in Section 3(a) if You Share
|
290 |
-
all or a substantial portion of the contents of the database.
|
291 |
-
|
292 |
-
For the avoidance of doubt, this Section 4 supplements and does not
|
293 |
-
replace Your obligations under this Public License where the Licensed
|
294 |
-
Rights include other Copyright and Similar Rights.
|
295 |
-
|
296 |
-
|
297 |
-
Section 5 -- Disclaimer of Warranties and Limitation of Liability.
|
298 |
-
|
299 |
-
a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
|
300 |
-
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
|
301 |
-
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
|
302 |
-
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
|
303 |
-
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
|
304 |
-
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
305 |
-
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
|
306 |
-
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
|
307 |
-
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
|
308 |
-
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
|
309 |
-
|
310 |
-
b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
|
311 |
-
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
|
312 |
-
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
|
313 |
-
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
|
314 |
-
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
|
315 |
-
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
|
316 |
-
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
|
317 |
-
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
|
318 |
-
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
|
319 |
-
|
320 |
-
c. The disclaimer of warranties and limitation of liability provided
|
321 |
-
above shall be interpreted in a manner that, to the extent
|
322 |
-
possible, most closely approximates an absolute disclaimer and
|
323 |
-
waiver of all liability.
|
324 |
-
|
325 |
-
|
326 |
-
Section 6 -- Term and Termination.
|
327 |
-
|
328 |
-
a. This Public License applies for the term of the Copyright and
|
329 |
-
Similar Rights licensed here. However, if You fail to comply with
|
330 |
-
this Public License, then Your rights under this Public License
|
331 |
-
terminate automatically.
|
332 |
-
|
333 |
-
b. Where Your right to use the Licensed Material has terminated under
|
334 |
-
Section 6(a), it reinstates:
|
335 |
-
|
336 |
-
1. automatically as of the date the violation is cured, provided
|
337 |
-
it is cured within 30 days of Your discovery of the
|
338 |
-
violation; or
|
339 |
-
|
340 |
-
2. upon express reinstatement by the Licensor.
|
341 |
-
|
342 |
-
For the avoidance of doubt, this Section 6(b) does not affect any
|
343 |
-
right the Licensor may have to seek remedies for Your violations
|
344 |
-
of this Public License.
|
345 |
-
|
346 |
-
c. For the avoidance of doubt, the Licensor may also offer the
|
347 |
-
Licensed Material under separate terms or conditions or stop
|
348 |
-
distributing the Licensed Material at any time; however, doing so
|
349 |
-
will not terminate this Public License.
|
350 |
-
|
351 |
-
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
|
352 |
-
License.
|
353 |
-
|
354 |
-
|
355 |
-
Section 7 -- Other Terms and Conditions.
|
356 |
-
|
357 |
-
a. The Licensor shall not be bound by any additional or different
|
358 |
-
terms or conditions communicated by You unless expressly agreed.
|
359 |
-
|
360 |
-
b. Any arrangements, understandings, or agreements regarding the
|
361 |
-
Licensed Material not stated herein are separate from and
|
362 |
-
independent of the terms and conditions of this Public License.
|
363 |
-
|
364 |
-
|
365 |
-
Section 8 -- Interpretation.
|
366 |
-
|
367 |
-
a. For the avoidance of doubt, this Public License does not, and
|
368 |
-
shall not be interpreted to, reduce, limit, restrict, or impose
|
369 |
-
conditions on any use of the Licensed Material that could lawfully
|
370 |
-
be made without permission under this Public License.
|
371 |
-
|
372 |
-
b. To the extent possible, if any provision of this Public License is
|
373 |
-
deemed unenforceable, it shall be automatically reformed to the
|
374 |
-
minimum extent necessary to make it enforceable. If the provision
|
375 |
-
cannot be reformed, it shall be severed from this Public License
|
376 |
-
without affecting the enforceability of the remaining terms and
|
377 |
-
conditions.
|
378 |
-
|
379 |
-
c. No term or condition of this Public License will be waived and no
|
380 |
-
failure to comply consented to unless expressly agreed to by the
|
381 |
-
Licensor.
|
382 |
-
|
383 |
-
d. Nothing in this Public License constitutes or may be interpreted
|
384 |
-
as a limitation upon, or waiver of, any privileges and immunities
|
385 |
-
that apply to the Licensor or You, including from the legal
|
386 |
-
processes of any jurisdiction or authority.
|
387 |
-
|
388 |
-
=======================================================================
|
389 |
-
|
390 |
-
Creative Commons is not a party to its public
|
391 |
-
licenses. Notwithstanding, Creative Commons may elect to apply one of
|
392 |
-
its public licenses to material it publishes and in those instances
|
393 |
-
will be considered the “Licensor.” The text of the Creative Commons
|
394 |
-
public licenses is dedicated to the public domain under the CC0 Public
|
395 |
-
Domain Dedication. Except for the limited purpose of indicating that
|
396 |
-
material is shared under a Creative Commons public license or as
|
397 |
-
otherwise permitted by the Creative Commons policies published at
|
398 |
-
creativecommons.org/policies, Creative Commons does not authorize the
|
399 |
-
use of the trademark "Creative Commons" or any other trademark or logo
|
400 |
-
of Creative Commons without its prior written consent including,
|
401 |
-
without limitation, in connection with any unauthorized modifications
|
402 |
-
to any of its public licenses or any other arrangements,
|
403 |
-
understandings, or agreements concerning use of licensed material. For
|
404 |
-
the avoidance of doubt, this paragraph does not form part of the
|
405 |
-
public licenses.
|
406 |
-
|
407 |
-
Creative Commons may be contacted at creativecommons.org.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
onediffusion/__init__.py
DELETED
File without changes
|
onediffusion/dataset/__init__.py
DELETED
File without changes
|
onediffusion/dataset/utils.py
DELETED
@@ -1,175 +0,0 @@
|
|
1 |
-
|
2 |
-
ASPECT_RATIO_2880 = {
|
3 |
-
'0.25': [1408.0, 5760.0], '0.26': [1408.0, 5568.0], '0.27': [1408.0, 5376.0], '0.28': [1408.0, 5184.0],
|
4 |
-
'0.32': [1600.0, 4992.0], '0.33': [1600.0, 4800.0], '0.34': [1600.0, 4672.0], '0.4': [1792.0, 4480.0],
|
5 |
-
'0.42': [1792.0, 4288.0], '0.47': [1920.0, 4096.0], '0.49': [1920.0, 3904.0], '0.51': [1920.0, 3776.0],
|
6 |
-
'0.55': [2112.0, 3840.0], '0.59': [2112.0, 3584.0], '0.68': [2304.0, 3392.0], '0.72': [2304.0, 3200.0],
|
7 |
-
'0.78': [2496.0, 3200.0], '0.83': [2496.0, 3008.0], '0.89': [2688.0, 3008.0], '0.93': [2688.0, 2880.0],
|
8 |
-
'1.0': [2880.0, 2880.0], '1.07': [2880.0, 2688.0], '1.12': [3008.0, 2688.0], '1.21': [3008.0, 2496.0],
|
9 |
-
'1.28': [3200.0, 2496.0], '1.39': [3200.0, 2304.0], '1.47': [3392.0, 2304.0], '1.7': [3584.0, 2112.0],
|
10 |
-
'1.82': [3840.0, 2112.0], '2.03': [3904.0, 1920.0], '2.13': [4096.0, 1920.0], '2.39': [4288.0, 1792.0],
|
11 |
-
'2.5': [4480.0, 1792.0], '2.92': [4672.0, 1600.0], '3.0': [4800.0, 1600.0], '3.12': [4992.0, 1600.0],
|
12 |
-
'3.68': [5184.0, 1408.0], '3.82': [5376.0, 1408.0], '3.95': [5568.0, 1408.0], '4.0': [5760.0, 1408.0]
|
13 |
-
}
|
14 |
-
|
15 |
-
ASPECT_RATIO_2048 = {
|
16 |
-
'0.25': [1024.0, 4096.0], '0.26': [1024.0, 3968.0], '0.27': [1024.0, 3840.0], '0.28': [1024.0, 3712.0],
|
17 |
-
'0.32': [1152.0, 3584.0], '0.33': [1152.0, 3456.0], '0.35': [1152.0, 3328.0], '0.4': [1280.0, 3200.0],
|
18 |
-
'0.42': [1280.0, 3072.0], '0.48': [1408.0, 2944.0], '0.5': [1408.0, 2816.0], '0.52': [1408.0, 2688.0],
|
19 |
-
'0.57': [1536.0, 2688.0], '0.6': [1536.0, 2560.0], '0.68': [1664.0, 2432.0], '0.72': [1664.0, 2304.0],
|
20 |
-
'0.78': [1792.0, 2304.0], '0.82': [1792.0, 2176.0], '0.88': [1920.0, 2176.0], '0.94': [1920.0, 2048.0],
|
21 |
-
'1.0': [2048.0, 2048.0], '1.07': [2048.0, 1920.0], '1.13': [2176.0, 1920.0], '1.21': [2176.0, 1792.0],
|
22 |
-
'1.29': [2304.0, 1792.0], '1.38': [2304.0, 1664.0], '1.46': [2432.0, 1664.0], '1.67': [2560.0, 1536.0],
|
23 |
-
'1.75': [2688.0, 1536.0], '2.0': [2816.0, 1408.0], '2.09': [2944.0, 1408.0], '2.4': [3072.0, 1280.0],
|
24 |
-
'2.5': [3200.0, 1280.0], '2.89': [3328.0, 1152.0], '3.0': [3456.0, 1152.0], '3.11': [3584.0, 1152.0],
|
25 |
-
'3.62': [3712.0, 1024.0], '3.75': [3840.0, 1024.0], '3.88': [3968.0, 1024.0], '4.0': [4096.0, 1024.0]
|
26 |
-
}
|
27 |
-
|
28 |
-
ASPECT_RATIO_1024 = {
|
29 |
-
'0.25': [512., 2048.], '0.26': [512., 1984.], '0.27': [512., 1920.], '0.28': [512., 1856.],
|
30 |
-
'0.32': [576., 1792.], '0.33': [576., 1728.], '0.35': [576., 1664.], '0.4': [640., 1600.],
|
31 |
-
'0.42': [640., 1536.], '0.48': [704., 1472.], '0.5': [704., 1408.], '0.52': [704., 1344.],
|
32 |
-
'0.57': [768., 1344.], '0.6': [768., 1280.], '0.68': [832., 1216.], '0.72': [832., 1152.],
|
33 |
-
'0.78': [896., 1152.], '0.82': [896., 1088.], '0.88': [960., 1088.], '0.94': [960., 1024.],
|
34 |
-
'1.0': [1024., 1024.], '1.07': [1024., 960.], '1.13': [1088., 960.], '1.21': [1088., 896.],
|
35 |
-
'1.29': [1152., 896.], '1.38': [1152., 832.], '1.46': [1216., 832.], '1.67': [1280., 768.],
|
36 |
-
'1.75': [1344., 768.], '2.0': [1408., 704.], '2.09': [1472., 704.], '2.4': [1536., 640.],
|
37 |
-
'2.5': [1600., 640.], '2.89': [1664., 576.], '3.0': [1728., 576.], '3.11': [1792., 576.],
|
38 |
-
'3.62': [1856., 512.], '3.75': [1920., 512.], '3.88': [1984., 512.], '4.0': [2048., 512.],
|
39 |
-
}
|
40 |
-
|
41 |
-
ASPECT_RATIO_512 = {
|
42 |
-
'0.25': [256.0, 1024.0], '0.26': [256.0, 992.0], '0.27': [256.0, 960.0], '0.28': [256.0, 928.0],
|
43 |
-
'0.32': [288.0, 896.0], '0.33': [288.0, 864.0], '0.35': [288.0, 832.0], '0.4': [320.0, 800.0],
|
44 |
-
'0.42': [320.0, 768.0], '0.48': [352.0, 736.0], '0.5': [352.0, 704.0], '0.52': [352.0, 672.0],
|
45 |
-
'0.57': [384.0, 672.0], '0.6': [384.0, 640.0], '0.68': [416.0, 608.0], '0.72': [416.0, 576.0],
|
46 |
-
'0.78': [448.0, 576.0], '0.82': [448.0, 544.0], '0.88': [480.0, 544.0], '0.94': [480.0, 512.0],
|
47 |
-
'1.0': [512.0, 512.0], '1.07': [512.0, 480.0], '1.13': [544.0, 480.0], '1.21': [544.0, 448.0],
|
48 |
-
'1.29': [576.0, 448.0], '1.38': [576.0, 416.0], '1.46': [608.0, 416.0], '1.67': [640.0, 384.0],
|
49 |
-
'1.75': [672.0, 384.0], '2.0': [704.0, 352.0], '2.09': [736.0, 352.0], '2.4': [768.0, 320.0],
|
50 |
-
'2.5': [800.0, 320.0], '2.89': [832.0, 288.0], '3.0': [864.0, 288.0], '3.11': [896.0, 288.0],
|
51 |
-
'3.62': [928.0, 256.0], '3.75': [960.0, 256.0], '3.88': [992.0, 256.0], '4.0': [1024.0, 256.0]
|
52 |
-
}
|
53 |
-
|
54 |
-
|
55 |
-
ASPECT_RATIO_384 = {
|
56 |
-
'0.25': [192.0, 768.0],
|
57 |
-
'0.26': [192.0, 736.0],
|
58 |
-
'0.27': [208.0, 768.0],
|
59 |
-
'0.28': [208.0, 736.0],
|
60 |
-
'0.33': [240.0, 720.0],
|
61 |
-
'0.4': [256.0, 640.0],
|
62 |
-
'0.42': [304.0, 720.0],
|
63 |
-
'0.48': [368.0, 768.0],
|
64 |
-
'0.5': [384.0, 768.0],
|
65 |
-
'0.52': [384.0, 736.0],
|
66 |
-
'0.57': [384.0, 672.0],
|
67 |
-
'0.6': [384.0, 640.0],
|
68 |
-
'0.73': [384.0, 528.0],
|
69 |
-
'0.77': [384.0, 496.0],
|
70 |
-
'0.83': [384.0, 464.0],
|
71 |
-
'0.89': [384.0, 432.0],
|
72 |
-
'0.92': [384.0, 416.0],
|
73 |
-
'1.0': [384.0, 384.0],
|
74 |
-
'1.09': [384.0, 352.0],
|
75 |
-
'1.14': [384.0, 336.0],
|
76 |
-
'1.2': [384.0, 320.0],
|
77 |
-
'1.26': [384.0, 304.0],
|
78 |
-
'1.33': [384.0, 288.0],
|
79 |
-
'1.41': [384.0, 272.0],
|
80 |
-
'1.6': [384.0, 240.0],
|
81 |
-
'1.71': [384.0, 224.0],
|
82 |
-
'2.0': [384.0, 192.0],
|
83 |
-
'2.4': [384.0, 160.0],
|
84 |
-
'2.88': [368.0, 128.0],
|
85 |
-
'3.0': [384.0, 128.0],
|
86 |
-
'3.43': [384.0, 112.0],
|
87 |
-
'4.0': [384.0, 96.0]
|
88 |
-
}
|
89 |
-
|
90 |
-
ASPECT_RATIO_256 = {
|
91 |
-
'0.25': [128.0, 512.0], '0.26': [128.0, 496.0], '0.27': [128.0, 480.0], '0.28': [128.0, 464.0],
|
92 |
-
'0.32': [144.0, 448.0], '0.33': [144.0, 432.0], '0.35': [144.0, 416.0], '0.4': [160.0, 400.0],
|
93 |
-
'0.42': [160.0, 384.0], '0.48': [176.0, 368.0], '0.5': [176.0, 352.0], '0.52': [176.0, 336.0],
|
94 |
-
'0.57': [192.0, 336.0], '0.6': [192.0, 320.0], '0.68': [208.0, 304.0], '0.72': [208.0, 288.0],
|
95 |
-
'0.78': [224.0, 288.0], '0.82': [224.0, 272.0], '0.88': [240.0, 272.0], '0.94': [240.0, 256.0],
|
96 |
-
'1.0': [256.0, 256.0], '1.07': [256.0, 240.0], '1.13': [272.0, 240.0], '1.21': [272.0, 224.0],
|
97 |
-
'1.29': [288.0, 224.0], '1.38': [288.0, 208.0], '1.46': [304.0, 208.0], '1.67': [320.0, 192.0],
|
98 |
-
'1.75': [336.0, 192.0], '2.0': [352.0, 176.0], '2.09': [368.0, 176.0], '2.4': [384.0, 160.0],
|
99 |
-
'2.5': [400.0, 160.0], '2.89': [416.0, 144.0], '3.0': [432.0, 144.0], '3.11': [448.0, 144.0],
|
100 |
-
'3.62': [464.0, 128.0], '3.75': [480.0, 128.0], '3.88': [496.0, 128.0], '4.0': [512.0, 128.0]
|
101 |
-
}
|
102 |
-
|
103 |
-
ASPECT_RATIO_256_TEST = {
|
104 |
-
'0.25': [128.0, 512.0], '0.28': [128.0, 464.0],
|
105 |
-
'0.32': [144.0, 448.0], '0.33': [144.0, 432.0], '0.35': [144.0, 416.0], '0.4': [160.0, 400.0],
|
106 |
-
'0.42': [160.0, 384.0], '0.48': [176.0, 368.0], '0.5': [176.0, 352.0], '0.52': [176.0, 336.0],
|
107 |
-
'0.57': [192.0, 336.0], '0.6': [192.0, 320.0], '0.68': [208.0, 304.0], '0.72': [208.0, 288.0],
|
108 |
-
'0.78': [224.0, 288.0], '0.82': [224.0, 272.0], '0.88': [240.0, 272.0], '0.94': [240.0, 256.0],
|
109 |
-
'1.0': [256.0, 256.0], '1.07': [256.0, 240.0], '1.13': [272.0, 240.0], '1.21': [272.0, 224.0],
|
110 |
-
'1.29': [288.0, 224.0], '1.38': [288.0, 208.0], '1.46': [304.0, 208.0], '1.67': [320.0, 192.0],
|
111 |
-
'1.75': [336.0, 192.0], '2.0': [352.0, 176.0], '2.09': [368.0, 176.0], '2.4': [384.0, 160.0],
|
112 |
-
'2.5': [400.0, 160.0], '3.0': [432.0, 144.0],
|
113 |
-
'4.0': [512.0, 128.0]
|
114 |
-
}
|
115 |
-
|
116 |
-
ASPECT_RATIO_512_TEST = {
|
117 |
-
'0.25': [256.0, 1024.0], '0.28': [256.0, 928.0],
|
118 |
-
'0.32': [288.0, 896.0], '0.33': [288.0, 864.0], '0.35': [288.0, 832.0], '0.4': [320.0, 800.0],
|
119 |
-
'0.42': [320.0, 768.0], '0.48': [352.0, 736.0], '0.5': [352.0, 704.0], '0.52': [352.0, 672.0],
|
120 |
-
'0.57': [384.0, 672.0], '0.6': [384.0, 640.0], '0.68': [416.0, 608.0], '0.72': [416.0, 576.0],
|
121 |
-
'0.78': [448.0, 576.0], '0.82': [448.0, 544.0], '0.88': [480.0, 544.0], '0.94': [480.0, 512.0],
|
122 |
-
'1.0': [512.0, 512.0], '1.07': [512.0, 480.0], '1.13': [544.0, 480.0], '1.21': [544.0, 448.0],
|
123 |
-
'1.29': [576.0, 448.0], '1.38': [576.0, 416.0], '1.46': [608.0, 416.0], '1.67': [640.0, 384.0],
|
124 |
-
'1.75': [672.0, 384.0], '2.0': [704.0, 352.0], '2.09': [736.0, 352.0], '2.4': [768.0, 320.0],
|
125 |
-
'2.5': [800.0, 320.0], '3.0': [864.0, 288.0],
|
126 |
-
'4.0': [1024.0, 256.0]
|
127 |
-
}
|
128 |
-
|
129 |
-
ASPECT_RATIO_1024_TEST = {
|
130 |
-
'0.25': [512., 2048.], '0.28': [512., 1856.],
|
131 |
-
'0.32': [576., 1792.], '0.33': [576., 1728.], '0.35': [576., 1664.], '0.4': [640., 1600.],
|
132 |
-
'0.42': [640., 1536.], '0.48': [704., 1472.], '0.5': [704., 1408.], '0.52': [704., 1344.],
|
133 |
-
'0.57': [768., 1344.], '0.6': [768., 1280.], '0.68': [832., 1216.], '0.72': [832., 1152.],
|
134 |
-
'0.78': [896., 1152.], '0.82': [896., 1088.], '0.88': [960., 1088.], '0.94': [960., 1024.],
|
135 |
-
'1.0': [1024., 1024.], '1.07': [1024., 960.], '1.13': [1088., 960.], '1.21': [1088., 896.],
|
136 |
-
'1.29': [1152., 896.], '1.38': [1152., 832.], '1.46': [1216., 832.], '1.67': [1280., 768.],
|
137 |
-
'1.75': [1344., 768.], '2.0': [1408., 704.], '2.09': [1472., 704.], '2.4': [1536., 640.],
|
138 |
-
'2.5': [1600., 640.], '3.0': [1728., 576.],
|
139 |
-
'4.0': [2048., 512.],
|
140 |
-
}
|
141 |
-
|
142 |
-
ASPECT_RATIO_2048_TEST = {
|
143 |
-
'0.25': [1024.0, 4096.0], '0.26': [1024.0, 3968.0],
|
144 |
-
'0.32': [1152.0, 3584.0], '0.33': [1152.0, 3456.0], '0.35': [1152.0, 3328.0], '0.4': [1280.0, 3200.0],
|
145 |
-
'0.42': [1280.0, 3072.0], '0.48': [1408.0, 2944.0], '0.5': [1408.0, 2816.0], '0.52': [1408.0, 2688.0],
|
146 |
-
'0.57': [1536.0, 2688.0], '0.6': [1536.0, 2560.0], '0.68': [1664.0, 2432.0], '0.72': [1664.0, 2304.0],
|
147 |
-
'0.78': [1792.0, 2304.0], '0.82': [1792.0, 2176.0], '0.88': [1920.0, 2176.0], '0.94': [1920.0, 2048.0],
|
148 |
-
'1.0': [2048.0, 2048.0], '1.07': [2048.0, 1920.0], '1.13': [2176.0, 1920.0], '1.21': [2176.0, 1792.0],
|
149 |
-
'1.29': [2304.0, 1792.0], '1.38': [2304.0, 1664.0], '1.46': [2432.0, 1664.0], '1.67': [2560.0, 1536.0],
|
150 |
-
'1.75': [2688.0, 1536.0], '2.0': [2816.0, 1408.0], '2.09': [2944.0, 1408.0], '2.4': [3072.0, 1280.0],
|
151 |
-
'2.5': [3200.0, 1280.0], '3.0': [3456.0, 1152.0],
|
152 |
-
'4.0': [4096.0, 1024.0]
|
153 |
-
}
|
154 |
-
|
155 |
-
ASPECT_RATIO_2880_TEST = {
|
156 |
-
'0.25': [2048.0, 8192.0], '0.26': [2048.0, 7936.0],
|
157 |
-
'0.32': [2304.0, 7168.0], '0.33': [2304.0, 6912.0], '0.35': [2304.0, 6656.0], '0.4': [2560.0, 6400.0],
|
158 |
-
'0.42': [2560.0, 6144.0], '0.48': [2816.0, 5888.0], '0.5': [2816.0, 5632.0], '0.52': [2816.0, 5376.0],
|
159 |
-
'0.57': [3072.0, 5376.0], '0.6': [3072.0, 5120.0], '0.68': [3328.0, 4864.0], '0.72': [3328.0, 4608.0],
|
160 |
-
'0.78': [3584.0, 4608.0], '0.82': [3584.0, 4352.0], '0.88': [3840.0, 4352.0], '0.94': [3840.0, 4096.0],
|
161 |
-
'1.0': [4096.0, 4096.0], '1.07': [4096.0, 3840.0], '1.13': [4352.0, 3840.0], '1.21': [4352.0, 3584.0],
|
162 |
-
'1.29': [4608.0, 3584.0], '1.38': [4608.0, 3328.0], '1.46': [4864.0, 3328.0], '1.67': [5120.0, 3072.0],
|
163 |
-
'1.75': [5376.0, 3072.0], '2.0': [5632.0, 2816.0], '2.09': [5888.0, 2816.0], '2.4': [6144.0, 2560.0],
|
164 |
-
'2.5': [6400.0, 2560.0], '3.0': [6912.0, 2304.0],
|
165 |
-
'4.0': [8192.0, 2048.0],
|
166 |
-
}
|
167 |
-
|
168 |
-
def get_chunks(lst, n):
|
169 |
-
for i in range(0, len(lst), n):
|
170 |
-
yield lst[i:i + n]
|
171 |
-
|
172 |
-
def get_closest_ratio(height: float, width: float, ratios: dict):
|
173 |
-
aspect_ratio = height / width
|
174 |
-
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio))
|
175 |
-
return ratios[closest_ratio], float(closest_ratio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
onediffusion/nextdit/__init__.py
DELETED
File without changes
|
onediffusion/nextdit/layers.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import numpy as np
|
5 |
-
from typing import Callable, Optional
|
6 |
-
import warnings
|
7 |
-
|
8 |
-
try:
|
9 |
-
from apex.normalization import FusedRMSNorm as RMSNorm
|
10 |
-
except ImportError:
|
11 |
-
warnings.warn("Cannot import apex RMSNorm, switch to vanilla implementation")
|
12 |
-
|
13 |
-
|
14 |
-
class RMSNorm(torch.nn.Module):
|
15 |
-
def __init__(self, dim: int, eps: float = 1e-6):
|
16 |
-
"""
|
17 |
-
Initialize the RMSNorm normalization layer.
|
18 |
-
Args:
|
19 |
-
dim (int): The dimension of the input tensor.
|
20 |
-
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
21 |
-
Attributes:
|
22 |
-
eps (float): A small value added to the denominator for numerical stability.
|
23 |
-
weight (nn.Parameter): Learnable scaling parameter.
|
24 |
-
"""
|
25 |
-
super().__init__()
|
26 |
-
self.eps = eps
|
27 |
-
self.weight = nn.Parameter(torch.ones(dim))
|
28 |
-
|
29 |
-
def _norm(self, x):
|
30 |
-
"""
|
31 |
-
Apply the RMSNorm normalization to the input tensor.
|
32 |
-
Args:
|
33 |
-
x (torch.Tensor): The input tensor.
|
34 |
-
Returns:
|
35 |
-
torch.Tensor: The normalized tensor.
|
36 |
-
"""
|
37 |
-
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
38 |
-
|
39 |
-
def forward(self, x):
|
40 |
-
"""
|
41 |
-
Forward pass through the RMSNorm layer.
|
42 |
-
Args:
|
43 |
-
x (torch.Tensor): The input tensor.
|
44 |
-
Returns:
|
45 |
-
torch.Tensor: The output tensor after applying RMSNorm.
|
46 |
-
"""
|
47 |
-
output = self._norm(x.float()).type_as(x)
|
48 |
-
return output * self.weight
|
49 |
-
|
50 |
-
|
51 |
-
def modulate(x, scale):
|
52 |
-
return x * (1 + scale.unsqueeze(1))
|
53 |
-
|
54 |
-
class LLamaFeedForward(nn.Module):
|
55 |
-
"""
|
56 |
-
Corresponds to the FeedForward layer in Next DiT.
|
57 |
-
"""
|
58 |
-
def __init__(
|
59 |
-
self,
|
60 |
-
dim: int,
|
61 |
-
hidden_dim: int,
|
62 |
-
multiple_of: int,
|
63 |
-
ffn_dim_multiplier: Optional[float] = None,
|
64 |
-
zeros_initialize: bool = True,
|
65 |
-
dtype: torch.dtype = torch.float32,
|
66 |
-
):
|
67 |
-
super().__init__()
|
68 |
-
self.dim = dim
|
69 |
-
self.hidden_dim = hidden_dim
|
70 |
-
self.multiple_of = multiple_of
|
71 |
-
self.ffn_dim_multiplier = ffn_dim_multiplier
|
72 |
-
self.zeros_initialize = zeros_initialize
|
73 |
-
self.dtype = dtype
|
74 |
-
|
75 |
-
# Compute hidden_dim based on the given formula
|
76 |
-
hidden_dim_calculated = int(2 * self.hidden_dim / 3)
|
77 |
-
if self.ffn_dim_multiplier is not None:
|
78 |
-
hidden_dim_calculated = int(self.ffn_dim_multiplier * hidden_dim_calculated)
|
79 |
-
hidden_dim_calculated = self.multiple_of * ((hidden_dim_calculated + self.multiple_of - 1) // self.multiple_of)
|
80 |
-
|
81 |
-
# Define linear layers
|
82 |
-
self.w1 = nn.Linear(self.dim, hidden_dim_calculated, bias=False)
|
83 |
-
self.w2 = nn.Linear(hidden_dim_calculated, self.dim, bias=False)
|
84 |
-
self.w3 = nn.Linear(self.dim, hidden_dim_calculated, bias=False)
|
85 |
-
|
86 |
-
# Initialize weights
|
87 |
-
if self.zeros_initialize:
|
88 |
-
nn.init.zeros_(self.w2.weight)
|
89 |
-
else:
|
90 |
-
nn.init.xavier_uniform_(self.w2.weight)
|
91 |
-
nn.init.xavier_uniform_(self.w1.weight)
|
92 |
-
nn.init.xavier_uniform_(self.w3.weight)
|
93 |
-
|
94 |
-
def _forward_silu_gating(self, x1, x3):
|
95 |
-
return F.silu(x1) * x3
|
96 |
-
|
97 |
-
def forward(self, x):
|
98 |
-
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
|
99 |
-
|
100 |
-
class FinalLayer(nn.Module):
|
101 |
-
"""
|
102 |
-
The final layer of Next-DiT.
|
103 |
-
"""
|
104 |
-
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
105 |
-
super().__init__()
|
106 |
-
self.hidden_size = hidden_size
|
107 |
-
self.patch_size = patch_size
|
108 |
-
self.out_channels = out_channels
|
109 |
-
|
110 |
-
# LayerNorm without learnable parameters (elementwise_affine=False)
|
111 |
-
self.norm_final = nn.LayerNorm(self.hidden_size, eps=1e-6, elementwise_affine=False)
|
112 |
-
self.linear = nn.Linear(self.hidden_size, np.prod(self.patch_size) * self.out_channels, bias=True)
|
113 |
-
nn.init.zeros_(self.linear.weight)
|
114 |
-
nn.init.zeros_(self.linear.bias)
|
115 |
-
|
116 |
-
self.adaLN_modulation = nn.Sequential(
|
117 |
-
nn.SiLU(),
|
118 |
-
nn.Linear(self.hidden_size, self.hidden_size),
|
119 |
-
)
|
120 |
-
# Initialize the last layer with zeros
|
121 |
-
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
122 |
-
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
123 |
-
|
124 |
-
def forward(self, x, c):
|
125 |
-
scale = self.adaLN_modulation(c)
|
126 |
-
x = modulate(self.norm_final(x), scale)
|
127 |
-
x = self.linear(x)
|
128 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
onediffusion/nextdit/modeling_nextdit.py
DELETED
@@ -1,482 +0,0 @@
|
|
1 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
2 |
-
from diffusers.models.modeling_utils import ModelMixin
|
3 |
-
import einops
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
import torch.nn.functional as F
|
8 |
-
from .layers import LLamaFeedForward, RMSNorm
|
9 |
-
|
10 |
-
|
11 |
-
def modulate(x, scale):
|
12 |
-
return x * (1 + scale)
|
13 |
-
|
14 |
-
class TimestepEmbedder(nn.Module):
|
15 |
-
"""
|
16 |
-
Embeds scalar timesteps into vector representations.
|
17 |
-
"""
|
18 |
-
def __init__(self, hidden_size, frequency_embedding_size=256):
|
19 |
-
super().__init__()
|
20 |
-
self.hidden_size = hidden_size
|
21 |
-
self.frequency_embedding_size = frequency_embedding_size
|
22 |
-
self.mlp = nn.Sequential(
|
23 |
-
nn.Linear(self.frequency_embedding_size, self.hidden_size),
|
24 |
-
nn.SiLU(),
|
25 |
-
nn.Linear(self.hidden_size, self.hidden_size),
|
26 |
-
)
|
27 |
-
|
28 |
-
@staticmethod
|
29 |
-
def timestep_embedding(t, dim, max_period=10000):
|
30 |
-
"""
|
31 |
-
Create sinusoidal timestep embeddings.
|
32 |
-
:param t: a 1-D Tensor of N indices, one per batch element.
|
33 |
-
:param dim: the dimension of the output.
|
34 |
-
:param max_period: controls the minimum frequency of the embeddings.
|
35 |
-
:return: an (N, D) Tensor of positional embeddings.
|
36 |
-
"""
|
37 |
-
half = dim // 2
|
38 |
-
freqs = torch.exp(
|
39 |
-
-np.log(max_period) * torch.arange(0, half, dtype=t.dtype) / half
|
40 |
-
).to(t.device)
|
41 |
-
args = t[:, :, None] * freqs[None, :]
|
42 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
43 |
-
if dim % 2:
|
44 |
-
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :, :1])], dim=-1)
|
45 |
-
return embedding
|
46 |
-
|
47 |
-
def forward(self, t):
|
48 |
-
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
49 |
-
t_freq = t_freq.to(self.mlp[0].weight.dtype)
|
50 |
-
return self.mlp(t_freq)
|
51 |
-
|
52 |
-
class FinalLayer(nn.Module):
|
53 |
-
def __init__(self, hidden_size, num_patches, out_channels):
|
54 |
-
super().__init__()
|
55 |
-
self.norm_final = nn.LayerNorm(hidden_size, eps=1e-6, elementwise_affine=False)
|
56 |
-
self.linear = nn.Linear(hidden_size, num_patches * out_channels)
|
57 |
-
self.adaLN_modulation = nn.Sequential(
|
58 |
-
nn.SiLU(),
|
59 |
-
nn.Linear(min(hidden_size, 1024), hidden_size),
|
60 |
-
)
|
61 |
-
|
62 |
-
def forward(self, x, c):
|
63 |
-
scale = self.adaLN_modulation(c)
|
64 |
-
x = modulate(self.norm_final(x), scale)
|
65 |
-
x = self.linear(x)
|
66 |
-
return x
|
67 |
-
|
68 |
-
class Attention(nn.Module):
|
69 |
-
def __init__(
|
70 |
-
self,
|
71 |
-
dim,
|
72 |
-
n_heads,
|
73 |
-
n_kv_heads=None,
|
74 |
-
qk_norm=False,
|
75 |
-
y_dim=0,
|
76 |
-
base_seqlen=None,
|
77 |
-
proportional_attn=False,
|
78 |
-
attention_dropout=0.0,
|
79 |
-
max_position_embeddings=384,
|
80 |
-
):
|
81 |
-
super().__init__()
|
82 |
-
self.dim = dim
|
83 |
-
self.n_heads = n_heads
|
84 |
-
self.n_kv_heads = n_kv_heads or n_heads
|
85 |
-
self.qk_norm = qk_norm
|
86 |
-
self.y_dim = y_dim
|
87 |
-
self.base_seqlen = base_seqlen
|
88 |
-
self.proportional_attn = proportional_attn
|
89 |
-
self.attention_dropout = attention_dropout
|
90 |
-
self.max_position_embeddings = max_position_embeddings
|
91 |
-
|
92 |
-
self.head_dim = dim // n_heads
|
93 |
-
|
94 |
-
self.wq = nn.Linear(dim, n_heads * self.head_dim, bias=False)
|
95 |
-
self.wk = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False)
|
96 |
-
self.wv = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False)
|
97 |
-
|
98 |
-
if y_dim > 0:
|
99 |
-
self.wk_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False)
|
100 |
-
self.wv_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False)
|
101 |
-
self.gate = nn.Parameter(torch.zeros(n_heads))
|
102 |
-
|
103 |
-
self.wo = nn.Linear(n_heads * self.head_dim, dim, bias=False)
|
104 |
-
|
105 |
-
if qk_norm:
|
106 |
-
self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim)
|
107 |
-
self.k_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim)
|
108 |
-
if y_dim > 0:
|
109 |
-
self.ky_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim, eps=1e-6)
|
110 |
-
else:
|
111 |
-
self.ky_norm = nn.Identity()
|
112 |
-
else:
|
113 |
-
self.q_norm = nn.Identity()
|
114 |
-
self.k_norm = nn.Identity()
|
115 |
-
self.ky_norm = nn.Identity()
|
116 |
-
|
117 |
-
|
118 |
-
@staticmethod
|
119 |
-
def apply_rotary_emb(xq, xk, freqs_cis):
|
120 |
-
# xq, xk: [batch_size, seq_len, n_heads, head_dim]
|
121 |
-
# freqs_cis: [1, seq_len, 1, head_dim]
|
122 |
-
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 2)
|
123 |
-
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 2)
|
124 |
-
|
125 |
-
xq_complex = torch.view_as_complex(xq_)
|
126 |
-
xk_complex = torch.view_as_complex(xk_)
|
127 |
-
|
128 |
-
freqs_cis = freqs_cis.unsqueeze(2)
|
129 |
-
|
130 |
-
# Apply freqs_cis
|
131 |
-
xq_out = xq_complex * freqs_cis
|
132 |
-
xk_out = xk_complex * freqs_cis
|
133 |
-
|
134 |
-
# Convert back to real numbers
|
135 |
-
xq_out = torch.view_as_real(xq_out).flatten(-2)
|
136 |
-
xk_out = torch.view_as_real(xk_out).flatten(-2)
|
137 |
-
|
138 |
-
return xq_out.type_as(xq), xk_out.type_as(xk)
|
139 |
-
|
140 |
-
def forward(
|
141 |
-
self,
|
142 |
-
x,
|
143 |
-
x_mask,
|
144 |
-
freqs_cis,
|
145 |
-
y=None,
|
146 |
-
y_mask=None,
|
147 |
-
init_cache=False,
|
148 |
-
):
|
149 |
-
bsz, seqlen, _ = x.size()
|
150 |
-
xq = self.wq(x)
|
151 |
-
xk = self.wk(x)
|
152 |
-
xv = self.wv(x)
|
153 |
-
|
154 |
-
if x_mask is None:
|
155 |
-
x_mask = torch.ones(bsz, seqlen, dtype=torch.bool, device=x.device)
|
156 |
-
inp_dtype = xq.dtype
|
157 |
-
|
158 |
-
xq = self.q_norm(xq)
|
159 |
-
xk = self.k_norm(xk)
|
160 |
-
|
161 |
-
xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim)
|
162 |
-
xk = xk.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
|
163 |
-
xv = xv.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
|
164 |
-
|
165 |
-
if self.n_kv_heads != self.n_heads:
|
166 |
-
n_rep = self.n_heads // self.n_kv_heads
|
167 |
-
xk = xk.repeat_interleave(n_rep, dim=2)
|
168 |
-
xv = xv.repeat_interleave(n_rep, dim=2)
|
169 |
-
|
170 |
-
freqs_cis = freqs_cis.to(xq.device)
|
171 |
-
xq, xk = self.apply_rotary_emb(xq, xk, freqs_cis)
|
172 |
-
|
173 |
-
output = (
|
174 |
-
F.scaled_dot_product_attention(
|
175 |
-
xq.permute(0, 2, 1, 3),
|
176 |
-
xk.permute(0, 2, 1, 3),
|
177 |
-
xv.permute(0, 2, 1, 3),
|
178 |
-
attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_heads, seqlen, -1),
|
179 |
-
scale=None,
|
180 |
-
)
|
181 |
-
.permute(0, 2, 1, 3)
|
182 |
-
.to(inp_dtype)
|
183 |
-
)
|
184 |
-
|
185 |
-
|
186 |
-
if hasattr(self, "wk_y"):
|
187 |
-
yk = self.ky_norm(self.wk_y(y)).view(bsz, -1, self.n_kv_heads, self.head_dim)
|
188 |
-
yv = self.wv_y(y).view(bsz, -1, self.n_kv_heads, self.head_dim)
|
189 |
-
n_rep = self.n_heads // self.n_kv_heads
|
190 |
-
# if n_rep >= 1:
|
191 |
-
# yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
192 |
-
# yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
193 |
-
if n_rep >= 1:
|
194 |
-
yk = einops.repeat(yk, "b l h d -> b l (repeat h) d", repeat=n_rep)
|
195 |
-
yv = einops.repeat(yv, "b l h d -> b l (repeat h) d", repeat=n_rep)
|
196 |
-
output_y = F.scaled_dot_product_attention(
|
197 |
-
xq.permute(0, 2, 1, 3),
|
198 |
-
yk.permute(0, 2, 1, 3),
|
199 |
-
yv.permute(0, 2, 1, 3),
|
200 |
-
y_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_heads, seqlen, -1).to(torch.bool),
|
201 |
-
).permute(0, 2, 1, 3)
|
202 |
-
output_y = output_y * self.gate.tanh().view(1, 1, -1, 1)
|
203 |
-
output = output + output_y
|
204 |
-
|
205 |
-
output = output.flatten(-2)
|
206 |
-
output = self.wo(output)
|
207 |
-
|
208 |
-
return output.to(inp_dtype)
|
209 |
-
|
210 |
-
class TransformerBlock(nn.Module):
|
211 |
-
"""
|
212 |
-
Corresponds to the Transformer block in the JAX code.
|
213 |
-
"""
|
214 |
-
def __init__(
|
215 |
-
self,
|
216 |
-
dim,
|
217 |
-
n_heads,
|
218 |
-
n_kv_heads,
|
219 |
-
multiple_of,
|
220 |
-
ffn_dim_multiplier,
|
221 |
-
norm_eps,
|
222 |
-
qk_norm,
|
223 |
-
y_dim,
|
224 |
-
max_position_embeddings,
|
225 |
-
):
|
226 |
-
super().__init__()
|
227 |
-
self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim=y_dim, max_position_embeddings=max_position_embeddings)
|
228 |
-
self.feed_forward = LLamaFeedForward(
|
229 |
-
dim=dim,
|
230 |
-
hidden_dim=4 * dim,
|
231 |
-
multiple_of=multiple_of,
|
232 |
-
ffn_dim_multiplier=ffn_dim_multiplier,
|
233 |
-
)
|
234 |
-
self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
|
235 |
-
self.attention_norm2 = RMSNorm(dim, eps=norm_eps)
|
236 |
-
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
|
237 |
-
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
|
238 |
-
self.adaLN_modulation = nn.Sequential(
|
239 |
-
nn.SiLU(),
|
240 |
-
nn.Linear(min(dim, 1024), 4 * dim),
|
241 |
-
)
|
242 |
-
self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps)
|
243 |
-
|
244 |
-
def forward(
|
245 |
-
self,
|
246 |
-
x,
|
247 |
-
x_mask,
|
248 |
-
freqs_cis,
|
249 |
-
y,
|
250 |
-
y_mask,
|
251 |
-
adaln_input=None,
|
252 |
-
):
|
253 |
-
if adaln_input is not None:
|
254 |
-
scales_gates = self.adaLN_modulation(adaln_input)
|
255 |
-
# TODO: Duong - check the dimension of chunking
|
256 |
-
# scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1)
|
257 |
-
scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1)
|
258 |
-
x = x + torch.tanh(gate_msa) * self.attention_norm2(
|
259 |
-
self.attention(
|
260 |
-
modulate(self.attention_norm1(x), scale_msa), # ok
|
261 |
-
x_mask,
|
262 |
-
freqs_cis,
|
263 |
-
self.attention_y_norm(y), # ok
|
264 |
-
y_mask,
|
265 |
-
)
|
266 |
-
)
|
267 |
-
x = x + torch.tanh(gate_mlp) * self.ffn_norm2(
|
268 |
-
self.feed_forward(
|
269 |
-
modulate(self.ffn_norm1(x), scale_mlp),
|
270 |
-
)
|
271 |
-
)
|
272 |
-
else:
|
273 |
-
x = x + self.attention_norm2(
|
274 |
-
self.attention(
|
275 |
-
self.attention_norm1(x),
|
276 |
-
x_mask,
|
277 |
-
freqs_cis,
|
278 |
-
self.attention_y_norm(y),
|
279 |
-
y_mask,
|
280 |
-
)
|
281 |
-
)
|
282 |
-
x = x + self.ffn_norm2(self.feed_forward(self.ffn_norm1(x)))
|
283 |
-
return x
|
284 |
-
|
285 |
-
|
286 |
-
class NextDiT(ModelMixin, ConfigMixin):
|
287 |
-
"""
|
288 |
-
Diffusion model with a Transformer backbone for joint image-video training.
|
289 |
-
"""
|
290 |
-
@register_to_config
|
291 |
-
def __init__(
|
292 |
-
self,
|
293 |
-
input_size=(1, 32, 32),
|
294 |
-
patch_size=(1, 2, 2),
|
295 |
-
in_channels=16,
|
296 |
-
hidden_size=4096,
|
297 |
-
depth=32,
|
298 |
-
num_heads=32,
|
299 |
-
num_kv_heads=None,
|
300 |
-
multiple_of=256,
|
301 |
-
ffn_dim_multiplier=None,
|
302 |
-
norm_eps=1e-5,
|
303 |
-
pred_sigma=False,
|
304 |
-
caption_channels=4096,
|
305 |
-
qk_norm=False,
|
306 |
-
norm_type="rms",
|
307 |
-
model_max_length=120,
|
308 |
-
rotary_max_length=384,
|
309 |
-
rotary_max_length_t=None
|
310 |
-
):
|
311 |
-
super().__init__()
|
312 |
-
self.input_size = input_size
|
313 |
-
self.patch_size = patch_size
|
314 |
-
self.in_channels = in_channels
|
315 |
-
self.hidden_size = hidden_size
|
316 |
-
self.depth = depth
|
317 |
-
self.num_heads = num_heads
|
318 |
-
self.num_kv_heads = num_kv_heads or num_heads
|
319 |
-
self.multiple_of = multiple_of
|
320 |
-
self.ffn_dim_multiplier = ffn_dim_multiplier
|
321 |
-
self.norm_eps = norm_eps
|
322 |
-
self.pred_sigma = pred_sigma
|
323 |
-
self.caption_channels = caption_channels
|
324 |
-
self.qk_norm = qk_norm
|
325 |
-
self.norm_type = norm_type
|
326 |
-
self.model_max_length = model_max_length
|
327 |
-
self.rotary_max_length = rotary_max_length
|
328 |
-
self.rotary_max_length_t = rotary_max_length_t
|
329 |
-
self.out_channels = in_channels * 2 if pred_sigma else in_channels
|
330 |
-
|
331 |
-
self.x_embedder = nn.Linear(np.prod(self.patch_size) * in_channels, hidden_size)
|
332 |
-
|
333 |
-
self.t_embedder = TimestepEmbedder(min(hidden_size, 1024))
|
334 |
-
self.y_embedder = nn.Sequential(
|
335 |
-
nn.LayerNorm(caption_channels, eps=1e-6),
|
336 |
-
nn.Linear(caption_channels, min(hidden_size, 1024)),
|
337 |
-
)
|
338 |
-
|
339 |
-
self.layers = nn.ModuleList([
|
340 |
-
TransformerBlock(
|
341 |
-
dim=hidden_size,
|
342 |
-
n_heads=num_heads,
|
343 |
-
n_kv_heads=self.num_kv_heads,
|
344 |
-
multiple_of=multiple_of,
|
345 |
-
ffn_dim_multiplier=ffn_dim_multiplier,
|
346 |
-
norm_eps=norm_eps,
|
347 |
-
qk_norm=qk_norm,
|
348 |
-
y_dim=caption_channels,
|
349 |
-
max_position_embeddings=rotary_max_length,
|
350 |
-
)
|
351 |
-
for _ in range(depth)
|
352 |
-
])
|
353 |
-
|
354 |
-
self.final_layer = FinalLayer(
|
355 |
-
hidden_size=hidden_size,
|
356 |
-
num_patches=np.prod(patch_size),
|
357 |
-
out_channels=self.out_channels,
|
358 |
-
)
|
359 |
-
|
360 |
-
assert (hidden_size // num_heads) % 6 == 0, "3d rope needs head dim to be divisible by 6"
|
361 |
-
|
362 |
-
self.freqs_cis = self.precompute_freqs_cis(
|
363 |
-
hidden_size // num_heads,
|
364 |
-
self.rotary_max_length,
|
365 |
-
end_t=self.rotary_max_length_t
|
366 |
-
)
|
367 |
-
|
368 |
-
def to(self, *args, **kwargs):
|
369 |
-
self = super().to(*args, **kwargs)
|
370 |
-
# self.freqs_cis = self.freqs_cis.to(*args, **kwargs)
|
371 |
-
return self
|
372 |
-
|
373 |
-
@staticmethod
|
374 |
-
def precompute_freqs_cis(
|
375 |
-
dim: int,
|
376 |
-
end: int,
|
377 |
-
end_t: int = None,
|
378 |
-
theta: float = 10000.0,
|
379 |
-
scale_factor: float = 1.0,
|
380 |
-
scale_watershed: float = 1.0,
|
381 |
-
timestep: float = 1.0,
|
382 |
-
):
|
383 |
-
if timestep < scale_watershed:
|
384 |
-
linear_factor = scale_factor
|
385 |
-
ntk_factor = 1.0
|
386 |
-
else:
|
387 |
-
linear_factor = 1.0
|
388 |
-
ntk_factor = scale_factor
|
389 |
-
|
390 |
-
theta = theta * ntk_factor
|
391 |
-
freqs = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor
|
392 |
-
|
393 |
-
timestep = torch.arange(end, dtype=torch.float32)
|
394 |
-
freqs = torch.outer(timestep, freqs).float()
|
395 |
-
freqs_cis = torch.exp(1j * freqs)
|
396 |
-
|
397 |
-
if end_t is not None:
|
398 |
-
freqs_t = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor
|
399 |
-
timestep_t = torch.arange(end_t, dtype=torch.float32)
|
400 |
-
freqs_t = torch.outer(timestep_t, freqs_t).float()
|
401 |
-
freqs_cis_t = torch.exp(1j * freqs_t)
|
402 |
-
freqs_cis_t = freqs_cis_t.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1)
|
403 |
-
else:
|
404 |
-
end_t = end
|
405 |
-
freqs_cis_t = freqs_cis.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1)
|
406 |
-
|
407 |
-
freqs_cis_h = freqs_cis.view(1, end, 1, dim // 6).repeat(end_t, 1, end, 1)
|
408 |
-
freqs_cis_w = freqs_cis.view(1, 1, end, dim // 6).repeat(end_t, end, 1, 1)
|
409 |
-
freqs_cis = torch.cat([freqs_cis_t, freqs_cis_h, freqs_cis_w], dim=-1).view(end_t, end, end, -1)
|
410 |
-
return freqs_cis
|
411 |
-
|
412 |
-
def forward(
|
413 |
-
self,
|
414 |
-
samples,
|
415 |
-
timesteps,
|
416 |
-
encoder_hidden_states,
|
417 |
-
encoder_attention_mask,
|
418 |
-
scale_factor: float = 1.0, # scale_factor for rotary embedding
|
419 |
-
scale_watershed: float = 1.0, # scale_watershed for rotary embedding
|
420 |
-
):
|
421 |
-
if samples.ndim == 4: # B C H W
|
422 |
-
samples = samples[:, None, ...] # B F C H W
|
423 |
-
|
424 |
-
precomputed_freqs_cis = None
|
425 |
-
if scale_factor != 1 or scale_watershed != 1:
|
426 |
-
precomputed_freqs_cis = self.precompute_freqs_cis(
|
427 |
-
self.hidden_size // self.num_heads,
|
428 |
-
self.rotary_max_length,
|
429 |
-
end_t=self.rotary_max_length_t,
|
430 |
-
scale_factor=scale_factor,
|
431 |
-
scale_watershed=scale_watershed,
|
432 |
-
timestep=torch.max(timesteps.cpu()).item()
|
433 |
-
)
|
434 |
-
|
435 |
-
if len(timesteps.shape) == 5:
|
436 |
-
t, *_ = self.patchify(timesteps, precomputed_freqs_cis)
|
437 |
-
timesteps = t.mean(dim=-1)
|
438 |
-
elif len(timesteps.shape) == 1:
|
439 |
-
timesteps = timesteps[:, None, None, None, None].expand_as(samples)
|
440 |
-
t, *_ = self.patchify(timesteps, precomputed_freqs_cis)
|
441 |
-
timesteps = t.mean(dim=-1)
|
442 |
-
samples, T, H, W, freqs_cis = self.patchify(samples, precomputed_freqs_cis)
|
443 |
-
samples = self.x_embedder(samples)
|
444 |
-
t = self.t_embedder(timesteps)
|
445 |
-
|
446 |
-
encoder_attention_mask_float = encoder_attention_mask[..., None].float()
|
447 |
-
encoder_hidden_states_pool = (encoder_hidden_states * encoder_attention_mask_float).sum(dim=1) / (encoder_attention_mask_float.sum(dim=1) + 1e-8)
|
448 |
-
encoder_hidden_states_pool = encoder_hidden_states_pool.to(samples.dtype)
|
449 |
-
y = self.y_embedder(encoder_hidden_states_pool)
|
450 |
-
y = y.unsqueeze(1).expand(-1, samples.size(1), -1)
|
451 |
-
|
452 |
-
adaln_input = t + y
|
453 |
-
|
454 |
-
for block in self.layers:
|
455 |
-
samples = block(samples, None, freqs_cis, encoder_hidden_states, encoder_attention_mask, adaln_input)
|
456 |
-
|
457 |
-
samples = self.final_layer(samples, adaln_input)
|
458 |
-
samples = self.unpatchify(samples, T, H, W)
|
459 |
-
|
460 |
-
return samples
|
461 |
-
|
462 |
-
def patchify(self, x, precompute_freqs_cis=None):
|
463 |
-
# pytorch is C, H, W
|
464 |
-
B, T, C, H, W = x.size()
|
465 |
-
pT, pH, pW = self.patch_size
|
466 |
-
x = x.view(B, T // pT, pT, C, H // pH, pH, W // pW, pW)
|
467 |
-
x = x.permute(0, 1, 4, 6, 2, 5, 7, 3)
|
468 |
-
x = x.reshape(B, -1, pT * pH * pW * C)
|
469 |
-
if precompute_freqs_cis is None:
|
470 |
-
freqs_cis = self.freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * self.freqs_cis.shape[3:])[None].to(x.device)
|
471 |
-
else:
|
472 |
-
freqs_cis = precompute_freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * precompute_freqs_cis.shape[3:])[None].to(x.device)
|
473 |
-
return x, T // pT, H // pH, W // pW, freqs_cis
|
474 |
-
|
475 |
-
def unpatchify(self, x, T, H, W):
|
476 |
-
B = x.size(0)
|
477 |
-
C = self.out_channels
|
478 |
-
pT, pH, pW = self.patch_size
|
479 |
-
x = x.view(B, T, H, W, pT, pH, pW, C)
|
480 |
-
x = x.permute(0, 1, 4, 7, 2, 5, 3, 6)
|
481 |
-
x = x.reshape(B, T * pT, C, H * pH, W * pW)
|
482 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
onediffusion/pipeline/__init__.py
DELETED
File without changes
|
onediffusion/pipeline/image_processor.py
DELETED
@@ -1,672 +0,0 @@
|
|
1 |
-
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
import math
|
16 |
-
import warnings
|
17 |
-
from typing import List, Optional, Tuple, Union
|
18 |
-
|
19 |
-
import numpy as np
|
20 |
-
import PIL.Image
|
21 |
-
import torch
|
22 |
-
import torch.nn.functional as F
|
23 |
-
import torchvision.transforms as T
|
24 |
-
from PIL import Image, ImageFilter, ImageOps
|
25 |
-
|
26 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
27 |
-
from diffusers.utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
|
28 |
-
|
29 |
-
# from onediffusion.dataset.transforms import CenterCropResizeImage
|
30 |
-
|
31 |
-
PipelineImageInput = Union[
|
32 |
-
PIL.Image.Image,
|
33 |
-
np.ndarray,
|
34 |
-
torch.Tensor,
|
35 |
-
List[PIL.Image.Image],
|
36 |
-
List[np.ndarray],
|
37 |
-
List[torch.Tensor],
|
38 |
-
]
|
39 |
-
|
40 |
-
PipelineDepthInput = PipelineImageInput
|
41 |
-
|
42 |
-
|
43 |
-
def is_valid_image(image):
|
44 |
-
return isinstance(image, PIL.Image.Image) or isinstance(image, (np.ndarray, torch.Tensor)) and image.ndim in (2, 3)
|
45 |
-
|
46 |
-
|
47 |
-
def is_valid_image_imagelist(images):
|
48 |
-
# check if the image input is one of the supported formats for image and image list:
|
49 |
-
# it can be either one of below 3
|
50 |
-
# (1) a 4d pytorch tensor or numpy array,
|
51 |
-
# (2) a valid image: PIL.Image.Image, 2-d np.ndarray or torch.Tensor (grayscale image), 3-d np.ndarray or torch.Tensor
|
52 |
-
# (3) a list of valid image
|
53 |
-
if isinstance(images, (np.ndarray, torch.Tensor)) and images.ndim == 4:
|
54 |
-
return True
|
55 |
-
elif is_valid_image(images):
|
56 |
-
return True
|
57 |
-
elif isinstance(images, list):
|
58 |
-
return all(is_valid_image(image) for image in images)
|
59 |
-
return False
|
60 |
-
|
61 |
-
|
62 |
-
class VaeImageProcessorOneDiffuser(ConfigMixin):
|
63 |
-
"""
|
64 |
-
Image processor for VAE.
|
65 |
-
|
66 |
-
Args:
|
67 |
-
do_resize (`bool`, *optional*, defaults to `True`):
|
68 |
-
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
|
69 |
-
`height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
|
70 |
-
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
71 |
-
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
|
72 |
-
resample (`str`, *optional*, defaults to `lanczos`):
|
73 |
-
Resampling filter to use when resizing the image.
|
74 |
-
do_normalize (`bool`, *optional*, defaults to `True`):
|
75 |
-
Whether to normalize the image to [-1,1].
|
76 |
-
do_binarize (`bool`, *optional*, defaults to `False`):
|
77 |
-
Whether to binarize the image to 0/1.
|
78 |
-
do_convert_rgb (`bool`, *optional*, defaults to be `False`):
|
79 |
-
Whether to convert the images to RGB format.
|
80 |
-
do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
|
81 |
-
Whether to convert the images to grayscale format.
|
82 |
-
"""
|
83 |
-
|
84 |
-
config_name = CONFIG_NAME
|
85 |
-
|
86 |
-
@register_to_config
|
87 |
-
def __init__(
|
88 |
-
self,
|
89 |
-
do_resize: bool = True,
|
90 |
-
vae_scale_factor: int = 8,
|
91 |
-
vae_latent_channels: int = 4,
|
92 |
-
resample: str = "lanczos",
|
93 |
-
do_normalize: bool = True,
|
94 |
-
do_binarize: bool = False,
|
95 |
-
do_convert_rgb: bool = False,
|
96 |
-
do_convert_grayscale: bool = False,
|
97 |
-
):
|
98 |
-
super().__init__()
|
99 |
-
if do_convert_rgb and do_convert_grayscale:
|
100 |
-
raise ValueError(
|
101 |
-
"`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
|
102 |
-
" if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
|
103 |
-
" if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
|
104 |
-
)
|
105 |
-
|
106 |
-
@staticmethod
|
107 |
-
def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
|
108 |
-
"""
|
109 |
-
Convert a numpy image or a batch of images to a PIL image.
|
110 |
-
"""
|
111 |
-
if images.ndim == 3:
|
112 |
-
images = images[None, ...]
|
113 |
-
images = (images * 255).round().astype("uint8")
|
114 |
-
if images.shape[-1] == 1:
|
115 |
-
# special case for grayscale (single channel) images
|
116 |
-
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
117 |
-
else:
|
118 |
-
pil_images = [Image.fromarray(image) for image in images]
|
119 |
-
|
120 |
-
return pil_images
|
121 |
-
|
122 |
-
@staticmethod
|
123 |
-
def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
|
124 |
-
"""
|
125 |
-
Convert a PIL image or a list of PIL images to NumPy arrays.
|
126 |
-
"""
|
127 |
-
if not isinstance(images, list):
|
128 |
-
images = [images]
|
129 |
-
images = [np.array(image).astype(np.float32) / 255.0 for image in images]
|
130 |
-
images = np.stack(images, axis=0)
|
131 |
-
|
132 |
-
return images
|
133 |
-
|
134 |
-
@staticmethod
|
135 |
-
def numpy_to_pt(images: np.ndarray) -> torch.Tensor:
|
136 |
-
"""
|
137 |
-
Convert a NumPy image to a PyTorch tensor.
|
138 |
-
"""
|
139 |
-
if images.ndim == 3:
|
140 |
-
images = images[..., None]
|
141 |
-
|
142 |
-
images = torch.from_numpy(images.transpose(0, 3, 1, 2))
|
143 |
-
return images
|
144 |
-
|
145 |
-
@staticmethod
|
146 |
-
def pt_to_numpy(images: torch.Tensor) -> np.ndarray:
|
147 |
-
"""
|
148 |
-
Convert a PyTorch tensor to a NumPy image.
|
149 |
-
"""
|
150 |
-
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
|
151 |
-
return images
|
152 |
-
|
153 |
-
@staticmethod
|
154 |
-
def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
155 |
-
"""
|
156 |
-
Normalize an image array to [-1,1].
|
157 |
-
"""
|
158 |
-
return 2.0 * images - 1.0
|
159 |
-
|
160 |
-
@staticmethod
|
161 |
-
def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
162 |
-
"""
|
163 |
-
Denormalize an image array to [0,1].
|
164 |
-
"""
|
165 |
-
return (images / 2 + 0.5).clamp(0, 1)
|
166 |
-
|
167 |
-
@staticmethod
|
168 |
-
def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
|
169 |
-
"""
|
170 |
-
Converts a PIL image to RGB format.
|
171 |
-
"""
|
172 |
-
image = image.convert("RGB")
|
173 |
-
|
174 |
-
return image
|
175 |
-
|
176 |
-
@staticmethod
|
177 |
-
def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
|
178 |
-
"""
|
179 |
-
Converts a PIL image to grayscale format.
|
180 |
-
"""
|
181 |
-
image = image.convert("L")
|
182 |
-
|
183 |
-
return image
|
184 |
-
|
185 |
-
@staticmethod
|
186 |
-
def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image:
|
187 |
-
"""
|
188 |
-
Applies Gaussian blur to an image.
|
189 |
-
"""
|
190 |
-
image = image.filter(ImageFilter.GaussianBlur(blur_factor))
|
191 |
-
|
192 |
-
return image
|
193 |
-
|
194 |
-
@staticmethod
|
195 |
-
def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0):
|
196 |
-
"""
|
197 |
-
Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect
|
198 |
-
ratio of the original image; for example, if user drew mask in a 128x32 region, and the dimensions for
|
199 |
-
processing are 512x512, the region will be expanded to 128x128.
|
200 |
-
|
201 |
-
Args:
|
202 |
-
mask_image (PIL.Image.Image): Mask image.
|
203 |
-
width (int): Width of the image to be processed.
|
204 |
-
height (int): Height of the image to be processed.
|
205 |
-
pad (int, optional): Padding to be added to the crop region. Defaults to 0.
|
206 |
-
|
207 |
-
Returns:
|
208 |
-
tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and
|
209 |
-
matches the original aspect ratio.
|
210 |
-
"""
|
211 |
-
|
212 |
-
mask_image = mask_image.convert("L")
|
213 |
-
mask = np.array(mask_image)
|
214 |
-
|
215 |
-
# 1. find a rectangular region that contains all masked ares in an image
|
216 |
-
h, w = mask.shape
|
217 |
-
crop_left = 0
|
218 |
-
for i in range(w):
|
219 |
-
if not (mask[:, i] == 0).all():
|
220 |
-
break
|
221 |
-
crop_left += 1
|
222 |
-
|
223 |
-
crop_right = 0
|
224 |
-
for i in reversed(range(w)):
|
225 |
-
if not (mask[:, i] == 0).all():
|
226 |
-
break
|
227 |
-
crop_right += 1
|
228 |
-
|
229 |
-
crop_top = 0
|
230 |
-
for i in range(h):
|
231 |
-
if not (mask[i] == 0).all():
|
232 |
-
break
|
233 |
-
crop_top += 1
|
234 |
-
|
235 |
-
crop_bottom = 0
|
236 |
-
for i in reversed(range(h)):
|
237 |
-
if not (mask[i] == 0).all():
|
238 |
-
break
|
239 |
-
crop_bottom += 1
|
240 |
-
|
241 |
-
# 2. add padding to the crop region
|
242 |
-
x1, y1, x2, y2 = (
|
243 |
-
int(max(crop_left - pad, 0)),
|
244 |
-
int(max(crop_top - pad, 0)),
|
245 |
-
int(min(w - crop_right + pad, w)),
|
246 |
-
int(min(h - crop_bottom + pad, h)),
|
247 |
-
)
|
248 |
-
|
249 |
-
# 3. expands crop region to match the aspect ratio of the image to be processed
|
250 |
-
ratio_crop_region = (x2 - x1) / (y2 - y1)
|
251 |
-
ratio_processing = width / height
|
252 |
-
|
253 |
-
if ratio_crop_region > ratio_processing:
|
254 |
-
desired_height = (x2 - x1) / ratio_processing
|
255 |
-
desired_height_diff = int(desired_height - (y2 - y1))
|
256 |
-
y1 -= desired_height_diff // 2
|
257 |
-
y2 += desired_height_diff - desired_height_diff // 2
|
258 |
-
if y2 >= mask_image.height:
|
259 |
-
diff = y2 - mask_image.height
|
260 |
-
y2 -= diff
|
261 |
-
y1 -= diff
|
262 |
-
if y1 < 0:
|
263 |
-
y2 -= y1
|
264 |
-
y1 -= y1
|
265 |
-
if y2 >= mask_image.height:
|
266 |
-
y2 = mask_image.height
|
267 |
-
else:
|
268 |
-
desired_width = (y2 - y1) * ratio_processing
|
269 |
-
desired_width_diff = int(desired_width - (x2 - x1))
|
270 |
-
x1 -= desired_width_diff // 2
|
271 |
-
x2 += desired_width_diff - desired_width_diff // 2
|
272 |
-
if x2 >= mask_image.width:
|
273 |
-
diff = x2 - mask_image.width
|
274 |
-
x2 -= diff
|
275 |
-
x1 -= diff
|
276 |
-
if x1 < 0:
|
277 |
-
x2 -= x1
|
278 |
-
x1 -= x1
|
279 |
-
if x2 >= mask_image.width:
|
280 |
-
x2 = mask_image.width
|
281 |
-
|
282 |
-
return x1, y1, x2, y2
|
283 |
-
|
284 |
-
def _resize_and_fill(
|
285 |
-
self,
|
286 |
-
image: PIL.Image.Image,
|
287 |
-
width: int,
|
288 |
-
height: int,
|
289 |
-
) -> PIL.Image.Image:
|
290 |
-
"""
|
291 |
-
Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
|
292 |
-
the image within the dimensions, filling empty with data from image.
|
293 |
-
|
294 |
-
Args:
|
295 |
-
image: The image to resize.
|
296 |
-
width: The width to resize the image to.
|
297 |
-
height: The height to resize the image to.
|
298 |
-
"""
|
299 |
-
|
300 |
-
ratio = width / height
|
301 |
-
src_ratio = image.width / image.height
|
302 |
-
|
303 |
-
src_w = width if ratio < src_ratio else image.width * height // image.height
|
304 |
-
src_h = height if ratio >= src_ratio else image.height * width // image.width
|
305 |
-
|
306 |
-
resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
|
307 |
-
res = Image.new("RGB", (width, height))
|
308 |
-
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
|
309 |
-
|
310 |
-
if ratio < src_ratio:
|
311 |
-
fill_height = height // 2 - src_h // 2
|
312 |
-
if fill_height > 0:
|
313 |
-
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
|
314 |
-
res.paste(
|
315 |
-
resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)),
|
316 |
-
box=(0, fill_height + src_h),
|
317 |
-
)
|
318 |
-
elif ratio > src_ratio:
|
319 |
-
fill_width = width // 2 - src_w // 2
|
320 |
-
if fill_width > 0:
|
321 |
-
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
|
322 |
-
res.paste(
|
323 |
-
resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)),
|
324 |
-
box=(fill_width + src_w, 0),
|
325 |
-
)
|
326 |
-
|
327 |
-
return res
|
328 |
-
|
329 |
-
def _resize_and_crop(
|
330 |
-
self,
|
331 |
-
image: PIL.Image.Image,
|
332 |
-
width: int,
|
333 |
-
height: int,
|
334 |
-
) -> PIL.Image.Image:
|
335 |
-
"""
|
336 |
-
Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
|
337 |
-
the image within the dimensions, cropping the excess.
|
338 |
-
|
339 |
-
Args:
|
340 |
-
image: The image to resize.
|
341 |
-
width: The width to resize the image to.
|
342 |
-
height: The height to resize the image to.
|
343 |
-
"""
|
344 |
-
ratio = width / height
|
345 |
-
src_ratio = image.width / image.height
|
346 |
-
|
347 |
-
src_w = width if ratio > src_ratio else image.width * height // image.height
|
348 |
-
src_h = height if ratio <= src_ratio else image.height * width // image.width
|
349 |
-
|
350 |
-
resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
|
351 |
-
res = Image.new("RGB", (width, height))
|
352 |
-
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
|
353 |
-
return res
|
354 |
-
|
355 |
-
def resize(
|
356 |
-
self,
|
357 |
-
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
|
358 |
-
height: int,
|
359 |
-
width: int,
|
360 |
-
resize_mode: str = "default", # "default", "fill", "crop"
|
361 |
-
) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
|
362 |
-
"""
|
363 |
-
Resize image.
|
364 |
-
|
365 |
-
Args:
|
366 |
-
image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
|
367 |
-
The image input, can be a PIL image, numpy array or pytorch tensor.
|
368 |
-
height (`int`):
|
369 |
-
The height to resize to.
|
370 |
-
width (`int`):
|
371 |
-
The width to resize to.
|
372 |
-
resize_mode (`str`, *optional*, defaults to `default`):
|
373 |
-
The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit
|
374 |
-
within the specified width and height, and it may not maintaining the original aspect ratio. If `fill`,
|
375 |
-
will resize the image to fit within the specified width and height, maintaining the aspect ratio, and
|
376 |
-
then center the image within the dimensions, filling empty with data from image. If `crop`, will resize
|
377 |
-
the image to fit within the specified width and height, maintaining the aspect ratio, and then center
|
378 |
-
the image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
|
379 |
-
supported for PIL image input.
|
380 |
-
|
381 |
-
Returns:
|
382 |
-
`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
|
383 |
-
The resized image.
|
384 |
-
"""
|
385 |
-
if resize_mode != "default" and not isinstance(image, PIL.Image.Image):
|
386 |
-
raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}")
|
387 |
-
if isinstance(image, PIL.Image.Image):
|
388 |
-
if resize_mode == "default":
|
389 |
-
image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
|
390 |
-
elif resize_mode == "fill":
|
391 |
-
image = self._resize_and_fill(image, width, height)
|
392 |
-
elif resize_mode == "crop":
|
393 |
-
image = self._resize_and_crop(image, width, height)
|
394 |
-
else:
|
395 |
-
raise ValueError(f"resize_mode {resize_mode} is not supported")
|
396 |
-
|
397 |
-
elif isinstance(image, torch.Tensor):
|
398 |
-
image = torch.nn.functional.interpolate(
|
399 |
-
image,
|
400 |
-
size=(height, width),
|
401 |
-
)
|
402 |
-
elif isinstance(image, np.ndarray):
|
403 |
-
image = self.numpy_to_pt(image)
|
404 |
-
image = torch.nn.functional.interpolate(
|
405 |
-
image,
|
406 |
-
size=(height, width),
|
407 |
-
)
|
408 |
-
image = self.pt_to_numpy(image)
|
409 |
-
return image
|
410 |
-
|
411 |
-
def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
412 |
-
"""
|
413 |
-
Create a mask.
|
414 |
-
|
415 |
-
Args:
|
416 |
-
image (`PIL.Image.Image`):
|
417 |
-
The image input, should be a PIL image.
|
418 |
-
|
419 |
-
Returns:
|
420 |
-
`PIL.Image.Image`:
|
421 |
-
The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1.
|
422 |
-
"""
|
423 |
-
image[image < 0.5] = 0
|
424 |
-
image[image >= 0.5] = 1
|
425 |
-
|
426 |
-
return image
|
427 |
-
|
428 |
-
def get_default_height_width(
|
429 |
-
self,
|
430 |
-
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
|
431 |
-
height: Optional[int] = None,
|
432 |
-
width: Optional[int] = None,
|
433 |
-
) -> Tuple[int, int]:
|
434 |
-
"""
|
435 |
-
This function return the height and width that are downscaled to the next integer multiple of
|
436 |
-
`vae_scale_factor`.
|
437 |
-
|
438 |
-
Args:
|
439 |
-
image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
|
440 |
-
The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have
|
441 |
-
shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should
|
442 |
-
have shape `[batch, channel, height, width]`.
|
443 |
-
height (`int`, *optional*, defaults to `None`):
|
444 |
-
The height in preprocessed image. If `None`, will use the height of `image` input.
|
445 |
-
width (`int`, *optional*`, defaults to `None`):
|
446 |
-
The width in preprocessed. If `None`, will use the width of the `image` input.
|
447 |
-
"""
|
448 |
-
|
449 |
-
if height is None:
|
450 |
-
if isinstance(image, PIL.Image.Image):
|
451 |
-
height = image.height
|
452 |
-
elif isinstance(image, torch.Tensor):
|
453 |
-
height = image.shape[2]
|
454 |
-
else:
|
455 |
-
height = image.shape[1]
|
456 |
-
|
457 |
-
if width is None:
|
458 |
-
if isinstance(image, PIL.Image.Image):
|
459 |
-
width = image.width
|
460 |
-
elif isinstance(image, torch.Tensor):
|
461 |
-
width = image.shape[3]
|
462 |
-
else:
|
463 |
-
width = image.shape[2]
|
464 |
-
|
465 |
-
width, height = (
|
466 |
-
x - x % self.config.vae_scale_factor for x in (width, height)
|
467 |
-
) # resize to integer multiple of vae_scale_factor
|
468 |
-
|
469 |
-
return height, width
|
470 |
-
|
471 |
-
def preprocess(
|
472 |
-
self,
|
473 |
-
image: PipelineImageInput,
|
474 |
-
height: Optional[int] = None,
|
475 |
-
width: Optional[int] = None,
|
476 |
-
do_crop: bool = False,
|
477 |
-
) -> torch.Tensor:
|
478 |
-
"""
|
479 |
-
Preprocess the image input.
|
480 |
-
|
481 |
-
Args:
|
482 |
-
image (`pipeline_image_input`):
|
483 |
-
The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of
|
484 |
-
supported formats.
|
485 |
-
height (`int`, *optional*, defaults to `None`):
|
486 |
-
The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default
|
487 |
-
height.
|
488 |
-
width (`int`, *optional*`, defaults to `None`):
|
489 |
-
The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width.
|
490 |
-
resize_mode (`str`, *optional*, defaults to `default`):
|
491 |
-
The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within
|
492 |
-
the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will
|
493 |
-
resize the image to fit within the specified width and height, maintaining the aspect ratio, and then
|
494 |
-
center the image within the dimensions, filling empty with data from image. If `crop`, will resize the
|
495 |
-
image to fit within the specified width and height, maintaining the aspect ratio, and then center the
|
496 |
-
image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
|
497 |
-
supported for PIL image input.
|
498 |
-
crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
|
499 |
-
The crop coordinates for each image in the batch. If `None`, will not crop the image.
|
500 |
-
"""
|
501 |
-
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
|
502 |
-
|
503 |
-
# Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
|
504 |
-
if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
|
505 |
-
if isinstance(image, torch.Tensor):
|
506 |
-
# if image is a pytorch tensor could have 2 possible shapes:
|
507 |
-
# 1. batch x height x width: we should insert the channel dimension at position 1
|
508 |
-
# 2. channel x height x width: we should insert batch dimension at position 0,
|
509 |
-
# however, since both channel and batch dimension has same size 1, it is same to insert at position 1
|
510 |
-
# for simplicity, we insert a dimension of size 1 at position 1 for both cases
|
511 |
-
image = image.unsqueeze(1)
|
512 |
-
else:
|
513 |
-
# if it is a numpy array, it could have 2 possible shapes:
|
514 |
-
# 1. batch x height x width: insert channel dimension on last position
|
515 |
-
# 2. height x width x channel: insert batch dimension on first position
|
516 |
-
if image.shape[-1] == 1:
|
517 |
-
image = np.expand_dims(image, axis=0)
|
518 |
-
else:
|
519 |
-
image = np.expand_dims(image, axis=-1)
|
520 |
-
|
521 |
-
if isinstance(image, list) and isinstance(image[0], np.ndarray) and image[0].ndim == 4:
|
522 |
-
warnings.warn(
|
523 |
-
"Passing `image` as a list of 4d np.ndarray is deprecated."
|
524 |
-
"Please concatenate the list along the batch dimension and pass it as a single 4d np.ndarray",
|
525 |
-
FutureWarning,
|
526 |
-
)
|
527 |
-
image = np.concatenate(image, axis=0)
|
528 |
-
if isinstance(image, list) and isinstance(image[0], torch.Tensor) and image[0].ndim == 4:
|
529 |
-
warnings.warn(
|
530 |
-
"Passing `image` as a list of 4d torch.Tensor is deprecated."
|
531 |
-
"Please concatenate the list along the batch dimension and pass it as a single 4d torch.Tensor",
|
532 |
-
FutureWarning,
|
533 |
-
)
|
534 |
-
image = torch.cat(image, axis=0)
|
535 |
-
|
536 |
-
if not is_valid_image_imagelist(image):
|
537 |
-
raise ValueError(
|
538 |
-
f"Input is in incorrect format. Currently, we only support {', '.join(str(x) for x in supported_formats)}"
|
539 |
-
)
|
540 |
-
if not isinstance(image, list):
|
541 |
-
image = [image]
|
542 |
-
|
543 |
-
if isinstance(image[0], PIL.Image.Image):
|
544 |
-
pass
|
545 |
-
elif isinstance(image[0], np.ndarray):
|
546 |
-
image = self.numpy_to_pil(image)
|
547 |
-
elif isinstance(image[0], torch.Tensor):
|
548 |
-
image = self.pt_to_numpy(image)
|
549 |
-
image = self.numpy_to_pil(image)
|
550 |
-
|
551 |
-
if do_crop:
|
552 |
-
transforms = T.Compose([
|
553 |
-
T.Lambda(lambda image: image.convert('RGB')),
|
554 |
-
T.ToTensor(),
|
555 |
-
T.CenterCrop((height, width)),
|
556 |
-
T.Normalize([.5], [.5]),
|
557 |
-
])
|
558 |
-
else:
|
559 |
-
transforms = T.Compose([
|
560 |
-
T.Lambda(lambda image: image.convert('RGB')),
|
561 |
-
T.ToTensor(),
|
562 |
-
T.Resize((height, width)),
|
563 |
-
T.Normalize([.5], [.5]),
|
564 |
-
])
|
565 |
-
image = torch.stack([transforms(i) for i in image])
|
566 |
-
|
567 |
-
# expected range [0,1], normalize to [-1,1]
|
568 |
-
do_normalize = self.config.do_normalize
|
569 |
-
if do_normalize and image.min() < 0:
|
570 |
-
warnings.warn(
|
571 |
-
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
|
572 |
-
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
|
573 |
-
FutureWarning,
|
574 |
-
)
|
575 |
-
do_normalize = False
|
576 |
-
if do_normalize:
|
577 |
-
image = self.normalize(image)
|
578 |
-
|
579 |
-
if self.config.do_binarize:
|
580 |
-
image = self.binarize(image)
|
581 |
-
|
582 |
-
return image
|
583 |
-
|
584 |
-
def postprocess(
|
585 |
-
self,
|
586 |
-
image: torch.Tensor,
|
587 |
-
output_type: str = "pil",
|
588 |
-
do_denormalize: Optional[List[bool]] = None,
|
589 |
-
) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
|
590 |
-
"""
|
591 |
-
Postprocess the image output from tensor to `output_type`.
|
592 |
-
|
593 |
-
Args:
|
594 |
-
image (`torch.Tensor`):
|
595 |
-
The image input, should be a pytorch tensor with shape `B x C x H x W`.
|
596 |
-
output_type (`str`, *optional*, defaults to `pil`):
|
597 |
-
The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
|
598 |
-
do_denormalize (`List[bool]`, *optional*, defaults to `None`):
|
599 |
-
Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
|
600 |
-
`VaeImageProcessor` config.
|
601 |
-
|
602 |
-
Returns:
|
603 |
-
`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
|
604 |
-
The postprocessed image.
|
605 |
-
"""
|
606 |
-
if not isinstance(image, torch.Tensor):
|
607 |
-
raise ValueError(
|
608 |
-
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
|
609 |
-
)
|
610 |
-
if output_type not in ["latent", "pt", "np", "pil"]:
|
611 |
-
deprecation_message = (
|
612 |
-
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
|
613 |
-
"`pil`, `np`, `pt`, `latent`"
|
614 |
-
)
|
615 |
-
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
|
616 |
-
output_type = "np"
|
617 |
-
|
618 |
-
if output_type == "latent":
|
619 |
-
return image
|
620 |
-
|
621 |
-
if do_denormalize is None:
|
622 |
-
do_denormalize = [self.config.do_normalize] * image.shape[0]
|
623 |
-
|
624 |
-
image = torch.stack(
|
625 |
-
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
|
626 |
-
)
|
627 |
-
|
628 |
-
if output_type == "pt":
|
629 |
-
return image
|
630 |
-
|
631 |
-
image = self.pt_to_numpy(image)
|
632 |
-
|
633 |
-
if output_type == "np":
|
634 |
-
return image
|
635 |
-
|
636 |
-
if output_type == "pil":
|
637 |
-
return self.numpy_to_pil(image)
|
638 |
-
|
639 |
-
def apply_overlay(
|
640 |
-
self,
|
641 |
-
mask: PIL.Image.Image,
|
642 |
-
init_image: PIL.Image.Image,
|
643 |
-
image: PIL.Image.Image,
|
644 |
-
crop_coords: Optional[Tuple[int, int, int, int]] = None,
|
645 |
-
) -> PIL.Image.Image:
|
646 |
-
"""
|
647 |
-
overlay the inpaint output to the original image
|
648 |
-
"""
|
649 |
-
|
650 |
-
width, height = image.width, image.height
|
651 |
-
|
652 |
-
init_image = self.resize(init_image, width=width, height=height)
|
653 |
-
mask = self.resize(mask, width=width, height=height)
|
654 |
-
|
655 |
-
init_image_masked = PIL.Image.new("RGBa", (width, height))
|
656 |
-
init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L")))
|
657 |
-
init_image_masked = init_image_masked.convert("RGBA")
|
658 |
-
|
659 |
-
if crop_coords is not None:
|
660 |
-
x, y, x2, y2 = crop_coords
|
661 |
-
w = x2 - x
|
662 |
-
h = y2 - y
|
663 |
-
base_image = PIL.Image.new("RGBA", (width, height))
|
664 |
-
image = self.resize(image, height=h, width=w, resize_mode="crop")
|
665 |
-
base_image.paste(image, (x, y))
|
666 |
-
image = base_image.convert("RGB")
|
667 |
-
|
668 |
-
image = image.convert("RGBA")
|
669 |
-
image.alpha_composite(init_image_masked)
|
670 |
-
image = image.convert("RGB")
|
671 |
-
|
672 |
-
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
onediffusion/pipeline/onediffusion.py
DELETED
@@ -1,1079 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
|
3 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
4 |
-
from diffusers.utils import (
|
5 |
-
CONFIG_NAME,
|
6 |
-
DEPRECATED_REVISION_ARGS,
|
7 |
-
BaseOutput,
|
8 |
-
PushToHubMixin,
|
9 |
-
deprecate,
|
10 |
-
is_accelerate_available,
|
11 |
-
is_accelerate_version,
|
12 |
-
is_torch_npu_available,
|
13 |
-
is_torch_version,
|
14 |
-
logging,
|
15 |
-
numpy_to_pil,
|
16 |
-
replace_example_docstring,
|
17 |
-
)
|
18 |
-
from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, ModelMixin
|
19 |
-
from diffusers.utils.torch_utils import randn_tensor
|
20 |
-
from diffusers.utils import BaseOutput
|
21 |
-
# from diffusers.image_processor import VaeImageProcessor
|
22 |
-
import einops
|
23 |
-
import inspect
|
24 |
-
import numpy as np
|
25 |
-
import PIL
|
26 |
-
import torch
|
27 |
-
from transformers import T5EncoderModel, T5Tokenizer
|
28 |
-
from typing import Any, Callable, Dict, List, Optional, Union
|
29 |
-
from PIL import Image
|
30 |
-
|
31 |
-
from ..nextdit.modeling_nextdit import NextDiT
|
32 |
-
from ..dataset.utils import *
|
33 |
-
# from ..dataset.multitask.multiview import calculate_rays
|
34 |
-
from ..pipeline.image_processor import VaeImageProcessorOneDiffuser
|
35 |
-
|
36 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
37 |
-
|
38 |
-
SUPPORTED_DEVICE_MAP = ["balanced"]
|
39 |
-
|
40 |
-
EXAMPLE_DOC_STRING = """
|
41 |
-
Examples:
|
42 |
-
```py
|
43 |
-
>>> import torch
|
44 |
-
>>> from one_diffusion import OneDiffusionPipeline
|
45 |
-
|
46 |
-
>>> pipe = OneDiffusionPipeline.from_pretrained("path_to_one_diffuser_model")
|
47 |
-
>>> pipe = pipe.to("cuda")
|
48 |
-
|
49 |
-
>>> prompt = "A beautiful sunset over the ocean"
|
50 |
-
>>> image = pipe(prompt).images[0]
|
51 |
-
>>> image.save("beautiful_sunset.png")
|
52 |
-
```
|
53 |
-
"""
|
54 |
-
|
55 |
-
def create_c2w_matrix(azimuth_deg, elevation_deg, distance=1.0, target=np.array([0, 0, 0])):
|
56 |
-
"""
|
57 |
-
Create a Camera-to-World (C2W) matrix from azimuth and elevation angles.
|
58 |
-
|
59 |
-
Parameters:
|
60 |
-
- azimuth_deg: Azimuth angle in degrees.
|
61 |
-
- elevation_deg: Elevation angle in degrees.
|
62 |
-
- distance: Distance from the target point.
|
63 |
-
- target: The point the camera is looking at in world coordinates.
|
64 |
-
|
65 |
-
Returns:
|
66 |
-
- C2W: A 4x4 NumPy array representing the Camera-to-World transformation matrix.
|
67 |
-
"""
|
68 |
-
# Convert angles from degrees to radians
|
69 |
-
azimuth = np.deg2rad(azimuth_deg)
|
70 |
-
elevation = np.deg2rad(elevation_deg)
|
71 |
-
|
72 |
-
# Spherical to Cartesian conversion for camera position
|
73 |
-
x = distance * np.cos(elevation) * np.cos(azimuth)
|
74 |
-
y = distance * np.cos(elevation) * np.sin(azimuth)
|
75 |
-
z = distance * np.sin(elevation)
|
76 |
-
camera_position = np.array([x, y, z])
|
77 |
-
|
78 |
-
# Define the forward vector (from camera to target)
|
79 |
-
target = 2*camera_position - target
|
80 |
-
forward = target - camera_position
|
81 |
-
forward /= np.linalg.norm(forward)
|
82 |
-
|
83 |
-
# Define the world up vector
|
84 |
-
world_up = np.array([0, 0, 1])
|
85 |
-
|
86 |
-
# Compute the right vector
|
87 |
-
right = np.cross(world_up, forward)
|
88 |
-
if np.linalg.norm(right) < 1e-6:
|
89 |
-
# Handle the singularity when forward is parallel to world_up
|
90 |
-
world_up = np.array([0, 1, 0])
|
91 |
-
right = np.cross(world_up, forward)
|
92 |
-
right /= np.linalg.norm(right)
|
93 |
-
|
94 |
-
# Recompute the orthogonal up vector
|
95 |
-
up = np.cross(forward, right)
|
96 |
-
|
97 |
-
# Construct the rotation matrix
|
98 |
-
rotation = np.vstack([right, up, forward]).T # 3x3
|
99 |
-
|
100 |
-
# Construct the full C2W matrix
|
101 |
-
C2W = np.eye(4)
|
102 |
-
C2W[:3, :3] = rotation
|
103 |
-
C2W[:3, 3] = camera_position
|
104 |
-
|
105 |
-
return C2W
|
106 |
-
|
107 |
-
@dataclass
|
108 |
-
class OneDiffusionPipelineOutput(BaseOutput):
|
109 |
-
"""
|
110 |
-
Output class for Stable Diffusion pipelines.
|
111 |
-
|
112 |
-
Args:
|
113 |
-
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
114 |
-
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
115 |
-
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
116 |
-
"""
|
117 |
-
|
118 |
-
images: Union[List[Image.Image], np.ndarray]
|
119 |
-
latents: Optional[torch.Tensor] = None
|
120 |
-
|
121 |
-
|
122 |
-
def retrieve_latents(
|
123 |
-
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
124 |
-
):
|
125 |
-
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
126 |
-
return encoder_output.latent_dist.sample(generator)
|
127 |
-
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
128 |
-
return encoder_output.latent_dist.mode()
|
129 |
-
elif hasattr(encoder_output, "latents"):
|
130 |
-
return encoder_output.latents
|
131 |
-
else:
|
132 |
-
raise AttributeError("Could not access latents of provided encoder_output")
|
133 |
-
|
134 |
-
|
135 |
-
def calculate_shift(
|
136 |
-
image_seq_len,
|
137 |
-
base_seq_len: int = 256,
|
138 |
-
max_seq_len: int = 4096,
|
139 |
-
base_shift: float = 0.5,
|
140 |
-
max_shift: float = 1.16,
|
141 |
-
# max_clip: float = 1.5,
|
142 |
-
):
|
143 |
-
m = (max_shift - base_shift) / (max_seq_len - base_seq_len) # 0.000169270833
|
144 |
-
b = base_shift - m * base_seq_len # 0.5-0.0433333332
|
145 |
-
mu = image_seq_len * m + b
|
146 |
-
# mu = min(mu, max_clip)
|
147 |
-
return mu
|
148 |
-
|
149 |
-
|
150 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
151 |
-
def retrieve_timesteps(
|
152 |
-
scheduler,
|
153 |
-
num_inference_steps: Optional[int] = None,
|
154 |
-
device: Optional[Union[str, torch.device]] = None,
|
155 |
-
timesteps: Optional[List[int]] = None,
|
156 |
-
sigmas: Optional[List[float]] = None,
|
157 |
-
**kwargs,
|
158 |
-
):
|
159 |
-
"""
|
160 |
-
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
161 |
-
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
162 |
-
|
163 |
-
Args:
|
164 |
-
scheduler (`SchedulerMixin`):
|
165 |
-
The scheduler to get timesteps from.
|
166 |
-
num_inference_steps (`int`):
|
167 |
-
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
168 |
-
must be `None`.
|
169 |
-
device (`str` or `torch.device`, *optional*):
|
170 |
-
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
171 |
-
timesteps (`List[int]`, *optional*):
|
172 |
-
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
173 |
-
`num_inference_steps` and `sigmas` must be `None`.
|
174 |
-
sigmas (`List[float]`, *optional*):
|
175 |
-
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
176 |
-
`num_inference_steps` and `timesteps` must be `None`.
|
177 |
-
|
178 |
-
Returns:
|
179 |
-
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
180 |
-
second element is the number of inference steps.
|
181 |
-
"""
|
182 |
-
if timesteps is not None and sigmas is not None:
|
183 |
-
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
184 |
-
if timesteps is not None:
|
185 |
-
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
186 |
-
if not accepts_timesteps:
|
187 |
-
raise ValueError(
|
188 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
189 |
-
f" timestep schedules. Please check whether you are using the correct scheduler."
|
190 |
-
)
|
191 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
192 |
-
timesteps = scheduler.timesteps
|
193 |
-
num_inference_steps = len(timesteps)
|
194 |
-
elif sigmas is not None:
|
195 |
-
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
196 |
-
if not accept_sigmas:
|
197 |
-
raise ValueError(
|
198 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
199 |
-
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
200 |
-
)
|
201 |
-
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
202 |
-
timesteps = scheduler.timesteps
|
203 |
-
num_inference_steps = len(timesteps)
|
204 |
-
else:
|
205 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
206 |
-
timesteps = scheduler.timesteps
|
207 |
-
return timesteps, num_inference_steps
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
class OneDiffusionPipeline(DiffusionPipeline):
|
212 |
-
r"""
|
213 |
-
Pipeline for text-to-image generation using OneDiffuser.
|
214 |
-
|
215 |
-
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
216 |
-
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
217 |
-
|
218 |
-
Args:
|
219 |
-
transformer ([`NextDiT`]):
|
220 |
-
Conditional transformer (NextDiT) architecture to denoise the encoded image latents.
|
221 |
-
vae ([`AutoencoderKL`]):
|
222 |
-
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
223 |
-
text_encoder ([`T5EncoderModel`]):
|
224 |
-
Frozen text-encoder. OneDiffuser uses the T5 model as text encoder.
|
225 |
-
tokenizer (`T5Tokenizer`):
|
226 |
-
Tokenizer of class T5Tokenizer.
|
227 |
-
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
228 |
-
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
229 |
-
"""
|
230 |
-
|
231 |
-
def __init__(
|
232 |
-
self,
|
233 |
-
transformer: NextDiT,
|
234 |
-
vae: AutoencoderKL,
|
235 |
-
text_encoder: T5EncoderModel,
|
236 |
-
tokenizer: T5Tokenizer,
|
237 |
-
scheduler: FlowMatchEulerDiscreteScheduler,
|
238 |
-
):
|
239 |
-
super().__init__()
|
240 |
-
self.register_modules(
|
241 |
-
transformer=transformer,
|
242 |
-
vae=vae,
|
243 |
-
text_encoder=text_encoder,
|
244 |
-
tokenizer=tokenizer,
|
245 |
-
scheduler=scheduler,
|
246 |
-
)
|
247 |
-
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
248 |
-
self.image_processor = VaeImageProcessorOneDiffuser(vae_scale_factor=self.vae_scale_factor)
|
249 |
-
|
250 |
-
def enable_vae_slicing(self):
|
251 |
-
self.vae.enable_slicing()
|
252 |
-
|
253 |
-
def disable_vae_slicing(self):
|
254 |
-
self.vae.disable_slicing()
|
255 |
-
|
256 |
-
def enable_sequential_cpu_offload(self, gpu_id=0):
|
257 |
-
if is_accelerate_available():
|
258 |
-
from accelerate import cpu_offload
|
259 |
-
else:
|
260 |
-
raise ImportError("Please install accelerate via `pip install accelerate`")
|
261 |
-
|
262 |
-
device = torch.device(f"cuda:{gpu_id}")
|
263 |
-
|
264 |
-
for cpu_offloaded_model in [self.transformer, self.text_encoder, self.vae]:
|
265 |
-
if cpu_offloaded_model is not None:
|
266 |
-
cpu_offload(cpu_offloaded_model, device)
|
267 |
-
|
268 |
-
@property
|
269 |
-
def _execution_device(self):
|
270 |
-
if self.device != torch.device("meta") or not hasattr(self.transformer, "_hf_hook"):
|
271 |
-
return self.device
|
272 |
-
for module in self.transformer.modules():
|
273 |
-
if (
|
274 |
-
hasattr(module, "_hf_hook")
|
275 |
-
and hasattr(module._hf_hook, "execution_device")
|
276 |
-
and module._hf_hook.execution_device is not None
|
277 |
-
):
|
278 |
-
return torch.device(module._hf_hook.execution_device)
|
279 |
-
return self.device
|
280 |
-
|
281 |
-
def encode_prompt(
|
282 |
-
self,
|
283 |
-
prompt,
|
284 |
-
device,
|
285 |
-
num_images_per_prompt,
|
286 |
-
do_classifier_free_guidance,
|
287 |
-
negative_prompt=None,
|
288 |
-
max_length=300,
|
289 |
-
):
|
290 |
-
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
291 |
-
|
292 |
-
text_inputs = self.tokenizer(
|
293 |
-
prompt,
|
294 |
-
padding="max_length",
|
295 |
-
max_length=max_length,
|
296 |
-
truncation=True,
|
297 |
-
add_special_tokens=True,
|
298 |
-
return_tensors="pt",
|
299 |
-
)
|
300 |
-
text_input_ids = text_inputs.input_ids
|
301 |
-
attention_mask = text_inputs.attention_mask
|
302 |
-
|
303 |
-
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
304 |
-
|
305 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
306 |
-
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
|
307 |
-
logger.warning(
|
308 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
309 |
-
f" {max_length} tokens: {removed_text}"
|
310 |
-
)
|
311 |
-
|
312 |
-
text_encoder_output = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask.to(device))
|
313 |
-
prompt_embeds = text_encoder_output[0].to(torch.float32)
|
314 |
-
|
315 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
316 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
317 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
318 |
-
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
319 |
-
|
320 |
-
# duplicate attention mask for each generation per prompt
|
321 |
-
attention_mask = attention_mask.repeat(1, num_images_per_prompt)
|
322 |
-
attention_mask = attention_mask.view(bs_embed * num_images_per_prompt, -1)
|
323 |
-
|
324 |
-
# get unconditional embeddings for classifier free guidance
|
325 |
-
if do_classifier_free_guidance:
|
326 |
-
uncond_tokens: List[str]
|
327 |
-
if negative_prompt is None:
|
328 |
-
uncond_tokens = [""] * batch_size
|
329 |
-
elif type(prompt) is not type(negative_prompt):
|
330 |
-
raise TypeError(
|
331 |
-
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
332 |
-
f" {type(prompt)}."
|
333 |
-
)
|
334 |
-
elif isinstance(negative_prompt, str):
|
335 |
-
uncond_tokens = [negative_prompt]
|
336 |
-
elif batch_size != len(negative_prompt):
|
337 |
-
raise ValueError(
|
338 |
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
339 |
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
340 |
-
" the batch size of `prompt`."
|
341 |
-
)
|
342 |
-
else:
|
343 |
-
uncond_tokens = negative_prompt
|
344 |
-
|
345 |
-
max_length = text_input_ids.shape[-1]
|
346 |
-
uncond_input = self.tokenizer(
|
347 |
-
uncond_tokens,
|
348 |
-
padding="max_length",
|
349 |
-
max_length=max_length,
|
350 |
-
truncation=True,
|
351 |
-
return_tensors="pt",
|
352 |
-
)
|
353 |
-
|
354 |
-
uncond_encoder_output = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device))
|
355 |
-
negative_prompt_embeds = uncond_encoder_output[0].to(torch.float32)
|
356 |
-
|
357 |
-
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
358 |
-
seq_len = negative_prompt_embeds.shape[1]
|
359 |
-
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
360 |
-
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
361 |
-
|
362 |
-
# duplicate unconditional attention mask for each generation per prompt
|
363 |
-
uncond_attention_mask = uncond_input.attention_mask.repeat(1, num_images_per_prompt)
|
364 |
-
uncond_attention_mask = uncond_attention_mask.view(batch_size * num_images_per_prompt, -1)
|
365 |
-
|
366 |
-
# For classifier free guidance, we need to do two forward passes.
|
367 |
-
# Here we concatenate the unconditional and text embeddings into a single batch
|
368 |
-
# to avoid doing two forward passes
|
369 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
370 |
-
attention_mask = torch.cat([uncond_attention_mask, attention_mask])
|
371 |
-
|
372 |
-
return prompt_embeds.to(device), attention_mask.to(device)
|
373 |
-
|
374 |
-
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
375 |
-
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
376 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
377 |
-
raise ValueError(
|
378 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
379 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
380 |
-
)
|
381 |
-
|
382 |
-
if latents is None:
|
383 |
-
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
384 |
-
else:
|
385 |
-
latents = latents.to(device)
|
386 |
-
|
387 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
388 |
-
latents = latents * self.scheduler.init_noise_sigma
|
389 |
-
return latents
|
390 |
-
|
391 |
-
@torch.no_grad()
|
392 |
-
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
393 |
-
def __call__(
|
394 |
-
self,
|
395 |
-
prompt: Union[str, List[str]] = None,
|
396 |
-
height: Optional[int] = None,
|
397 |
-
width: Optional[int] = None,
|
398 |
-
num_inference_steps: int = 50,
|
399 |
-
guidance_scale: float = 5.0,
|
400 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
401 |
-
num_images_per_prompt: Optional[int] = 1,
|
402 |
-
eta: float = 0.0,
|
403 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
404 |
-
latents: Optional[torch.FloatTensor] = None,
|
405 |
-
output_type: Optional[str] = "pil",
|
406 |
-
return_dict: bool = True,
|
407 |
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
408 |
-
callback_steps: int = 1,
|
409 |
-
forward_kwargs: Optional[Dict[str, Any]] = {},
|
410 |
-
**kwargs,
|
411 |
-
):
|
412 |
-
r"""
|
413 |
-
Function invoked when calling the pipeline for generation.
|
414 |
-
|
415 |
-
Args:
|
416 |
-
prompt (`str` or `List[str]`, *optional*):
|
417 |
-
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
418 |
-
height (`int`, *optional*, defaults to self.transformer.config.sample_size):
|
419 |
-
The height in pixels of the generated image.
|
420 |
-
width (`int`, *optional*, defaults to self.transformer.config.sample_size):
|
421 |
-
The width in pixels of the generated image.
|
422 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
423 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
424 |
-
expense of slower inference.
|
425 |
-
guidance_scale (`float`, *optional*, defaults to 7.5):
|
426 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
427 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
428 |
-
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
429 |
-
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
430 |
-
usually at the expense of lower image quality.
|
431 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
432 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
433 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
434 |
-
less than `1`).
|
435 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
436 |
-
The number of images to generate per prompt.
|
437 |
-
eta (`float`, *optional*, defaults to 0.0):
|
438 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
439 |
-
[`schedulers.DDIMScheduler`], will be ignored for others.
|
440 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
441 |
-
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
442 |
-
to make generation deterministic.
|
443 |
-
latents (`torch.FloatTensor`, *optional*):
|
444 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
445 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
446 |
-
tensor will ge generated by sampling using the supplied random `generator`.
|
447 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
448 |
-
The output format of the generate image. Choose between
|
449 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
450 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
451 |
-
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
452 |
-
plain tuple.
|
453 |
-
callback (`Callable`, *optional*):
|
454 |
-
A function that will be called every `callback_steps` steps during inference. The function will be
|
455 |
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
456 |
-
callback_steps (`int`, *optional*, defaults to 1):
|
457 |
-
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
458 |
-
called at every step.
|
459 |
-
|
460 |
-
Examples:
|
461 |
-
|
462 |
-
Returns:
|
463 |
-
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
464 |
-
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
465 |
-
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
466 |
-
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
467 |
-
(nsfw) content, according to the `safety_checker`.
|
468 |
-
"""
|
469 |
-
height = height or self.transformer.config.input_size[-2] * 8 # TODO: Hardcoded downscale factor of vae
|
470 |
-
width = width or self.transformer.config.input_size[-1] * 8
|
471 |
-
|
472 |
-
# check inputs. Raise error if not correct
|
473 |
-
self.check_inputs(prompt, height, width, callback_steps)
|
474 |
-
|
475 |
-
# define call parameters
|
476 |
-
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
477 |
-
device = self._execution_device
|
478 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
479 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf
|
480 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
481 |
-
|
482 |
-
encoder_hidden_states, encoder_attention_mask = self.encode_prompt(
|
483 |
-
prompt,
|
484 |
-
device,
|
485 |
-
num_images_per_prompt,
|
486 |
-
do_classifier_free_guidance,
|
487 |
-
negative_prompt,
|
488 |
-
)
|
489 |
-
|
490 |
-
# set timesteps
|
491 |
-
# # self.scheduler.set_timesteps(num_inference_steps, device=device)
|
492 |
-
# timesteps = self.scheduler.timesteps
|
493 |
-
timesteps = None
|
494 |
-
|
495 |
-
# prepare latent variables
|
496 |
-
num_channels_latents = self.transformer.config.in_channels
|
497 |
-
latents = self.prepare_latents(
|
498 |
-
batch_size * num_images_per_prompt,
|
499 |
-
num_channels_latents,
|
500 |
-
height,
|
501 |
-
width,
|
502 |
-
self.dtype,
|
503 |
-
device,
|
504 |
-
generator,
|
505 |
-
latents,
|
506 |
-
)
|
507 |
-
|
508 |
-
# prepare extra step kwargs
|
509 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
510 |
-
|
511 |
-
# 5. Prepare timesteps
|
512 |
-
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
513 |
-
image_seq_len = latents.shape[-1] * latents.shape[-2] / self.transformer.config.patch_size[-1] / self.transformer.config.patch_size[-2]
|
514 |
-
mu = calculate_shift(
|
515 |
-
image_seq_len,
|
516 |
-
self.scheduler.config.base_image_seq_len,
|
517 |
-
self.scheduler.config.max_image_seq_len,
|
518 |
-
self.scheduler.config.base_shift,
|
519 |
-
self.scheduler.config.max_shift,
|
520 |
-
)
|
521 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
522 |
-
self.scheduler,
|
523 |
-
num_inference_steps,
|
524 |
-
device,
|
525 |
-
timesteps,
|
526 |
-
sigmas,
|
527 |
-
mu=mu,
|
528 |
-
)
|
529 |
-
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
530 |
-
self._num_timesteps = len(timesteps)
|
531 |
-
|
532 |
-
# denoising loop
|
533 |
-
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
534 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
535 |
-
for i, t in enumerate(timesteps):
|
536 |
-
# expand the latents if we are doing classifier free guidance
|
537 |
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
538 |
-
# latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
539 |
-
|
540 |
-
# predict the noise residual
|
541 |
-
noise_pred = self.transformer(
|
542 |
-
samples=latent_model_input.to(self.dtype),
|
543 |
-
timesteps=torch.tensor([t] * latent_model_input.shape[0], device=device),
|
544 |
-
encoder_hidden_states=encoder_hidden_states.to(self.dtype),
|
545 |
-
encoder_attention_mask=encoder_attention_mask,
|
546 |
-
**forward_kwargs
|
547 |
-
)
|
548 |
-
|
549 |
-
# perform guidance
|
550 |
-
if do_classifier_free_guidance:
|
551 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
552 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
553 |
-
|
554 |
-
# compute the previous noisy sample x_t -> x_t-1
|
555 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
556 |
-
|
557 |
-
# call the callback, if provided
|
558 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
559 |
-
progress_bar.update()
|
560 |
-
if callback is not None and i % callback_steps == 0:
|
561 |
-
callback(i, t, latents)
|
562 |
-
|
563 |
-
# scale and decode the image latents with vae
|
564 |
-
latents = 1 / self.vae.config.scaling_factor * latents
|
565 |
-
if latents.ndim == 5:
|
566 |
-
latents = latents.squeeze(1)
|
567 |
-
image = self.vae.decode(latents.to(self.vae.dtype)).sample
|
568 |
-
|
569 |
-
image = (image / 2 + 0.5).clamp(0, 1)
|
570 |
-
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
571 |
-
|
572 |
-
if output_type == "pil":
|
573 |
-
image = self.numpy_to_pil(image)
|
574 |
-
|
575 |
-
if not return_dict:
|
576 |
-
return (image, None)
|
577 |
-
|
578 |
-
return OneDiffusionPipelineOutput(images=image)
|
579 |
-
|
580 |
-
@torch.no_grad()
|
581 |
-
def img2img(
|
582 |
-
self,
|
583 |
-
prompt: Union[str, List[str]] = None,
|
584 |
-
image: Union[PIL.Image.Image, List[PIL.Image.Image]] = None,
|
585 |
-
height: Optional[int] = None,
|
586 |
-
width: Optional[int] = None,
|
587 |
-
num_inference_steps: int = 50,
|
588 |
-
guidance_scale: float = 5.0,
|
589 |
-
denoise_mask: Optional[List[int]] = [1, 0],
|
590 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
591 |
-
num_images_per_prompt: Optional[int] = 1,
|
592 |
-
eta: float = 0.0,
|
593 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
594 |
-
latents: Optional[torch.FloatTensor] = None,
|
595 |
-
output_type: Optional[str] = "pil",
|
596 |
-
return_dict: bool = True,
|
597 |
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
598 |
-
callback_steps: int = 1,
|
599 |
-
do_crop: bool = True,
|
600 |
-
is_multiview: bool = False,
|
601 |
-
multiview_azimuths: Optional[List[int]] = [0, 30, 60, 90],
|
602 |
-
multiview_elevations: Optional[List[int]] = [0, 0, 0, 0],
|
603 |
-
multiview_distances: float = 1.7,
|
604 |
-
multiview_c2ws: Optional[List[torch.Tensor]] = None,
|
605 |
-
multiview_intrinsics: Optional[torch.Tensor] = None,
|
606 |
-
multiview_focal_length: float = 1.3887,
|
607 |
-
forward_kwargs: Optional[Dict[str, Any]] = {},
|
608 |
-
noise_scale: float = 1.0,
|
609 |
-
**kwargs,
|
610 |
-
):
|
611 |
-
# Convert single image to list for consistent handling
|
612 |
-
if isinstance(image, PIL.Image.Image):
|
613 |
-
image = [image]
|
614 |
-
|
615 |
-
if height is None or width is None:
|
616 |
-
closest_ar = get_closest_ratio(height=image[0].size[1], width=image[0].size[0], ratios=ASPECT_RATIO_512)
|
617 |
-
height, width = int(closest_ar[0][0]), int(closest_ar[0][1])
|
618 |
-
|
619 |
-
if not isinstance(multiview_distances, list) and not isinstance(multiview_distances, tuple):
|
620 |
-
multiview_distances = [multiview_distances] * len(multiview_azimuths)
|
621 |
-
|
622 |
-
# height = height or self.transformer.config.input_size[-2] * 8 # TODO: Hardcoded downscale factor of vae
|
623 |
-
# width = width or self.transformer.config.input_size[-1] * 8
|
624 |
-
|
625 |
-
# 1. check inputs. Raise error if not correct
|
626 |
-
self.check_inputs(prompt, height, width, callback_steps)
|
627 |
-
|
628 |
-
# Additional input validation for image list
|
629 |
-
if not all(isinstance(img, PIL.Image.Image) for img in image):
|
630 |
-
raise ValueError("All elements in image list must be PIL.Image objects")
|
631 |
-
|
632 |
-
# 2. define call parameters
|
633 |
-
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
634 |
-
device = self._execution_device
|
635 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
636 |
-
|
637 |
-
# 3. Encode input prompt
|
638 |
-
encoder_hidden_states, encoder_attention_mask = self.encode_prompt(
|
639 |
-
prompt,
|
640 |
-
device,
|
641 |
-
num_images_per_prompt,
|
642 |
-
do_classifier_free_guidance,
|
643 |
-
negative_prompt,
|
644 |
-
)
|
645 |
-
|
646 |
-
# 4. Preprocess all images
|
647 |
-
if image is not None and len(image) > 0:
|
648 |
-
processed_image = self.image_processor.preprocess(image, height=height, width=width, do_crop=do_crop)
|
649 |
-
else:
|
650 |
-
processed_image = None
|
651 |
-
|
652 |
-
# # Stack processed images along the sequence dimension
|
653 |
-
# if len(processed_images) > 1:
|
654 |
-
# processed_image = torch.cat(processed_images, dim=0)
|
655 |
-
# else:
|
656 |
-
# processed_image = processed_images[0]
|
657 |
-
|
658 |
-
timesteps = None
|
659 |
-
|
660 |
-
# 6. prepare latent variables
|
661 |
-
num_channels_latents = self.transformer.config.in_channels
|
662 |
-
if processed_image is not None:
|
663 |
-
cond_latents = self.prepare_latents(
|
664 |
-
batch_size * num_images_per_prompt,
|
665 |
-
num_channels_latents,
|
666 |
-
height,
|
667 |
-
width,
|
668 |
-
self.dtype,
|
669 |
-
device,
|
670 |
-
generator,
|
671 |
-
latents,
|
672 |
-
image=processed_image,
|
673 |
-
)
|
674 |
-
else:
|
675 |
-
cond_latents = None
|
676 |
-
|
677 |
-
# 7. prepare extra step kwargs
|
678 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
679 |
-
denoise_mask = torch.tensor(denoise_mask, device=device)
|
680 |
-
denoise_indices = torch.where(denoise_mask == 1)[0]
|
681 |
-
cond_indices = torch.where(denoise_mask == 0)[0]
|
682 |
-
seq_length = denoise_mask.shape[0]
|
683 |
-
|
684 |
-
latents = self.prepare_init_latents(
|
685 |
-
batch_size * num_images_per_prompt,
|
686 |
-
seq_length,
|
687 |
-
num_channels_latents,
|
688 |
-
height,
|
689 |
-
width,
|
690 |
-
self.dtype,
|
691 |
-
device,
|
692 |
-
generator,
|
693 |
-
)
|
694 |
-
|
695 |
-
# 5. Prepare timesteps
|
696 |
-
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
697 |
-
# image_seq_len = latents.shape[1] * latents.shape[-1] * latents.shape[-2] / self.transformer.config.patch_size[-1] / self.transformer.config.patch_size[-2]
|
698 |
-
image_seq_len = noise_scale * sum(denoise_mask) * latents.shape[-1] * latents.shape[-2] / self.transformer.config.patch_size[-1] / self.transformer.config.patch_size[-2]
|
699 |
-
# image_seq_len = 256
|
700 |
-
mu = calculate_shift(
|
701 |
-
image_seq_len,
|
702 |
-
self.scheduler.config.base_image_seq_len,
|
703 |
-
self.scheduler.config.max_image_seq_len,
|
704 |
-
self.scheduler.config.base_shift,
|
705 |
-
self.scheduler.config.max_shift,
|
706 |
-
)
|
707 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
708 |
-
self.scheduler,
|
709 |
-
num_inference_steps,
|
710 |
-
device,
|
711 |
-
timesteps,
|
712 |
-
sigmas,
|
713 |
-
mu=mu,
|
714 |
-
)
|
715 |
-
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
716 |
-
self._num_timesteps = len(timesteps)
|
717 |
-
|
718 |
-
if is_multiview:
|
719 |
-
raise Exception('Multiview is supported in this demo.')
|
720 |
-
cond_indices_images = [index // 2 for index in cond_indices if index % 2 == 0]
|
721 |
-
cond_indices_rays = [index // 2 for index in cond_indices if index % 2 == 1]
|
722 |
-
|
723 |
-
multiview_elevations = [element for element in multiview_elevations if element is not None]
|
724 |
-
multiview_azimuths = [element for element in multiview_azimuths if element is not None]
|
725 |
-
multiview_distances = [element for element in multiview_distances if element is not None]
|
726 |
-
|
727 |
-
if multiview_c2ws is None:
|
728 |
-
multiview_c2ws = [
|
729 |
-
torch.tensor(create_c2w_matrix(azimuth, elevation, distance)) for azimuth, elevation, distance in zip(multiview_azimuths, multiview_elevations, multiview_distances)
|
730 |
-
]
|
731 |
-
c2ws = torch.stack(multiview_c2ws).float()
|
732 |
-
else:
|
733 |
-
c2ws = torch.Tensor(multiview_c2ws).float()
|
734 |
-
|
735 |
-
c2ws[:, 0:3, 1:3] *= -1
|
736 |
-
c2ws = c2ws[:, [1, 0, 2, 3], :]
|
737 |
-
c2ws[:, 2, :] *= -1
|
738 |
-
|
739 |
-
w2cs = torch.inverse(c2ws)
|
740 |
-
if multiview_intrinsics is None:
|
741 |
-
multiview_intrinsics = torch.Tensor([[[multiview_focal_length, 0, 0.5], [0, multiview_focal_length, 0.5], [0, 0, 1]]]).repeat(c2ws.shape[0], 1, 1)
|
742 |
-
K = multiview_intrinsics
|
743 |
-
Rs = w2cs[:, :3, :3]
|
744 |
-
Ts = w2cs[:, :3, 3]
|
745 |
-
sizes = torch.Tensor([[1, 1]]).repeat(c2ws.shape[0], 1)
|
746 |
-
|
747 |
-
assert height == width
|
748 |
-
cond_rays = calculate_rays(K, sizes, Rs, Ts, height // 8)
|
749 |
-
cond_rays = cond_rays.reshape(-1, height // 8, width // 8, 6)
|
750 |
-
# padding = (0, 10)
|
751 |
-
# cond_rays = torch.nn.functional.pad(cond_rays, padding, "constant", 0)
|
752 |
-
cond_rays = torch.cat([cond_rays, cond_rays, cond_rays[..., :4]], dim=-1) * 1.658
|
753 |
-
cond_rays = cond_rays[None].repeat(batch_size * num_images_per_prompt, 1, 1, 1, 1)
|
754 |
-
cond_rays = cond_rays.permute(0, 1, 4, 2, 3)
|
755 |
-
cond_rays = cond_rays.to(device, dtype=self.dtype)
|
756 |
-
|
757 |
-
latents = einops.rearrange(latents, "b (f n) c h w -> b f n c h w", n=2)
|
758 |
-
if cond_latents is not None:
|
759 |
-
latents[:, cond_indices_images, 0] = cond_latents
|
760 |
-
latents[:, cond_indices_rays, 1] = cond_rays
|
761 |
-
latents = einops.rearrange(latents, "b f n c h w -> b (f n) c h w")
|
762 |
-
else:
|
763 |
-
if cond_latents is not None:
|
764 |
-
latents[:, cond_indices] = cond_latents
|
765 |
-
|
766 |
-
# denoising loop
|
767 |
-
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
768 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
769 |
-
for i, t in enumerate(timesteps):
|
770 |
-
# expand the latents if we are doing classifier free guidance
|
771 |
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
772 |
-
input_t = torch.broadcast_to(einops.repeat(torch.Tensor([t]).to(device), "1 -> 1 f 1 1 1", f=latent_model_input.shape[1]), latent_model_input.shape).clone()
|
773 |
-
|
774 |
-
if is_multiview:
|
775 |
-
input_t = einops.rearrange(input_t, "b (f n) c h w -> b f n c h w", n=2)
|
776 |
-
input_t[:, cond_indices_images, 0] = self.scheduler.timesteps[-1]
|
777 |
-
input_t[:, cond_indices_rays, 1] = self.scheduler.timesteps[-1]
|
778 |
-
input_t = einops.rearrange(input_t, "b f n c h w -> b (f n) c h w")
|
779 |
-
else:
|
780 |
-
input_t[:, cond_indices] = self.scheduler.timesteps[-1]
|
781 |
-
|
782 |
-
# predict the noise residual
|
783 |
-
noise_pred = self.transformer(
|
784 |
-
samples=latent_model_input.to(self.dtype),
|
785 |
-
timesteps=input_t,
|
786 |
-
encoder_hidden_states=encoder_hidden_states.to(self.dtype),
|
787 |
-
encoder_attention_mask=encoder_attention_mask,
|
788 |
-
**forward_kwargs
|
789 |
-
)
|
790 |
-
|
791 |
-
# perform guidance
|
792 |
-
if do_classifier_free_guidance:
|
793 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
794 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
795 |
-
|
796 |
-
# compute the previous noisy sample x_t -> x_t-1
|
797 |
-
bs, n_frame = noise_pred.shape[:2]
|
798 |
-
noise_pred = einops.rearrange(noise_pred, "b f c h w -> (b f) c h w")
|
799 |
-
latents = einops.rearrange(latents, "b f c h w -> (b f) c h w")
|
800 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
801 |
-
latents = einops.rearrange(latents, "(b f) c h w -> b f c h w", b=bs, f=n_frame)
|
802 |
-
if is_multiview:
|
803 |
-
latents = einops.rearrange(latents, "b (f n) c h w -> b f n c h w", n=2)
|
804 |
-
if cond_latents is not None:
|
805 |
-
latents[:, cond_indices_images, 0] = cond_latents
|
806 |
-
latents[:, cond_indices_rays, 1] = cond_rays
|
807 |
-
latents = einops.rearrange(latents, "b f n c h w -> b (f n) c h w")
|
808 |
-
else:
|
809 |
-
if cond_latents is not None:
|
810 |
-
latents[:, cond_indices] = cond_latents
|
811 |
-
|
812 |
-
# call the callback, if provided
|
813 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
814 |
-
progress_bar.update()
|
815 |
-
if callback is not None and i % callback_steps == 0:
|
816 |
-
callback(i, t, latents)
|
817 |
-
|
818 |
-
decoded_latents = latents / 1.658
|
819 |
-
# scale and decode the image latents with vae
|
820 |
-
latents = 1 / self.vae.config.scaling_factor * latents
|
821 |
-
if latents.ndim == 5:
|
822 |
-
latents = latents[:, denoise_indices]
|
823 |
-
latents = einops.rearrange(latents, "b f c h w -> (b f) c h w")
|
824 |
-
image = self.vae.decode(latents.to(self.vae.dtype)).sample
|
825 |
-
|
826 |
-
image = (image / 2 + 0.5).clamp(0, 1)
|
827 |
-
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
828 |
-
|
829 |
-
if output_type == "pil":
|
830 |
-
image = self.numpy_to_pil(image)
|
831 |
-
|
832 |
-
if not return_dict:
|
833 |
-
return (image, None)
|
834 |
-
|
835 |
-
return OneDiffusionPipelineOutput(images=image, latents=decoded_latents)
|
836 |
-
|
837 |
-
def prepare_extra_step_kwargs(self, generator, eta):
|
838 |
-
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
839 |
-
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
840 |
-
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
841 |
-
# and should be between [0, 1]
|
842 |
-
|
843 |
-
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
844 |
-
extra_step_kwargs = {}
|
845 |
-
if accepts_eta:
|
846 |
-
extra_step_kwargs["eta"] = eta
|
847 |
-
|
848 |
-
# check if the scheduler accepts generator
|
849 |
-
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
850 |
-
if accepts_generator:
|
851 |
-
extra_step_kwargs["generator"] = generator
|
852 |
-
return extra_step_kwargs
|
853 |
-
|
854 |
-
def check_inputs(self, prompt, height, width, callback_steps):
|
855 |
-
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
856 |
-
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
857 |
-
|
858 |
-
if height % 16 != 0 or width % 16 != 0:
|
859 |
-
raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
|
860 |
-
|
861 |
-
if (callback_steps is None) or (
|
862 |
-
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
863 |
-
):
|
864 |
-
raise ValueError(
|
865 |
-
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
866 |
-
f" {type(callback_steps)}."
|
867 |
-
)
|
868 |
-
|
869 |
-
def get_timesteps(self, num_inference_steps, strength, device):
|
870 |
-
# get the original timestep using init_timestep
|
871 |
-
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
872 |
-
|
873 |
-
t_start = max(num_inference_steps - init_timestep, 0)
|
874 |
-
timesteps = self.scheduler.timesteps[t_start:]
|
875 |
-
|
876 |
-
return timesteps, num_inference_steps - t_start
|
877 |
-
|
878 |
-
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, image=None):
|
879 |
-
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
880 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
881 |
-
raise ValueError(
|
882 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
883 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
884 |
-
)
|
885 |
-
|
886 |
-
if latents is None:
|
887 |
-
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
888 |
-
else:
|
889 |
-
latents = latents.to(device)
|
890 |
-
|
891 |
-
if image is None:
|
892 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
893 |
-
# latents = latents * self.scheduler.init_noise_sigma
|
894 |
-
return latents
|
895 |
-
|
896 |
-
image = image.to(device=device, dtype=dtype)
|
897 |
-
|
898 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
899 |
-
raise ValueError(
|
900 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
901 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
902 |
-
)
|
903 |
-
elif isinstance(generator, list):
|
904 |
-
if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
|
905 |
-
image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
|
906 |
-
elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
|
907 |
-
raise ValueError(
|
908 |
-
f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
|
909 |
-
)
|
910 |
-
init_latents = [
|
911 |
-
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
912 |
-
for i in range(batch_size)
|
913 |
-
]
|
914 |
-
init_latents = torch.cat(init_latents, dim=0)
|
915 |
-
else:
|
916 |
-
init_latents = retrieve_latents(self.vae.encode(image.to(self.vae.dtype)), generator=generator)
|
917 |
-
|
918 |
-
init_latents = self.vae.config.scaling_factor * init_latents
|
919 |
-
init_latents = init_latents.to(device=device, dtype=dtype)
|
920 |
-
|
921 |
-
init_latents = einops.rearrange(init_latents, "(bs views) c h w -> bs views c h w", bs=batch_size, views=init_latents.shape[0]//batch_size)
|
922 |
-
# latents = einops.rearrange(latents, "b c h w -> b 1 c h w")
|
923 |
-
# latents = torch.concat([latents, init_latents], dim=1)
|
924 |
-
return init_latents
|
925 |
-
|
926 |
-
def prepare_init_latents(self, batch_size, seq_length, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
927 |
-
shape = (batch_size, seq_length, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
928 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
929 |
-
raise ValueError(
|
930 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
931 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
932 |
-
)
|
933 |
-
|
934 |
-
if latents is None:
|
935 |
-
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
936 |
-
else:
|
937 |
-
latents = latents.to(device)
|
938 |
-
|
939 |
-
return latents
|
940 |
-
|
941 |
-
@torch.no_grad()
|
942 |
-
def generate(
|
943 |
-
self,
|
944 |
-
prompt: Union[str, List[str]],
|
945 |
-
num_inference_steps: int = 50,
|
946 |
-
guidance_scale: float = 5.0,
|
947 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
948 |
-
num_images_per_prompt: Optional[int] = 1,
|
949 |
-
height: Optional[int] = None,
|
950 |
-
width: Optional[int] = None,
|
951 |
-
eta: float = 0.0,
|
952 |
-
generator: Optional[torch.Generator] = None,
|
953 |
-
latents: Optional[torch.FloatTensor] = None,
|
954 |
-
output_type: Optional[str] = "pil",
|
955 |
-
return_dict: bool = True,
|
956 |
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
957 |
-
callback_steps: Optional[int] = 1,
|
958 |
-
):
|
959 |
-
"""
|
960 |
-
Function for image generation using the OneDiffusionPipeline.
|
961 |
-
"""
|
962 |
-
return self(
|
963 |
-
prompt=prompt,
|
964 |
-
num_inference_steps=num_inference_steps,
|
965 |
-
guidance_scale=guidance_scale,
|
966 |
-
negative_prompt=negative_prompt,
|
967 |
-
num_images_per_prompt=num_images_per_prompt,
|
968 |
-
height=height,
|
969 |
-
width=width,
|
970 |
-
eta=eta,
|
971 |
-
generator=generator,
|
972 |
-
latents=latents,
|
973 |
-
output_type=output_type,
|
974 |
-
return_dict=return_dict,
|
975 |
-
callback=callback,
|
976 |
-
callback_steps=callback_steps,
|
977 |
-
)
|
978 |
-
|
979 |
-
@staticmethod
|
980 |
-
def numpy_to_pil(images):
|
981 |
-
"""
|
982 |
-
Convert a numpy image or a batch of images to a PIL image.
|
983 |
-
"""
|
984 |
-
if images.ndim == 3:
|
985 |
-
images = images[None, ...]
|
986 |
-
images = (images * 255).round().astype("uint8")
|
987 |
-
if images.shape[-1] == 1:
|
988 |
-
# special case for grayscale (single channel) images
|
989 |
-
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
990 |
-
else:
|
991 |
-
pil_images = [Image.fromarray(image) for image in images]
|
992 |
-
|
993 |
-
return pil_images
|
994 |
-
|
995 |
-
@classmethod
|
996 |
-
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
997 |
-
model_path = pretrained_model_name_or_path
|
998 |
-
cache_dir = kwargs.pop("cache_dir", None)
|
999 |
-
force_download = kwargs.pop("force_download", False)
|
1000 |
-
proxies = kwargs.pop("proxies", None)
|
1001 |
-
local_files_only = kwargs.pop("local_files_only", None)
|
1002 |
-
token = kwargs.pop("token", None)
|
1003 |
-
revision = kwargs.pop("revision", None)
|
1004 |
-
from_flax = kwargs.pop("from_flax", False)
|
1005 |
-
torch_dtype = kwargs.pop("torch_dtype", None)
|
1006 |
-
custom_pipeline = kwargs.pop("custom_pipeline", None)
|
1007 |
-
custom_revision = kwargs.pop("custom_revision", None)
|
1008 |
-
provider = kwargs.pop("provider", None)
|
1009 |
-
sess_options = kwargs.pop("sess_options", None)
|
1010 |
-
device_map = kwargs.pop("device_map", None)
|
1011 |
-
max_memory = kwargs.pop("max_memory", None)
|
1012 |
-
offload_folder = kwargs.pop("offload_folder", None)
|
1013 |
-
offload_state_dict = kwargs.pop("offload_state_dict", False)
|
1014 |
-
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
1015 |
-
variant = kwargs.pop("variant", None)
|
1016 |
-
use_safetensors = kwargs.pop("use_safetensors", None)
|
1017 |
-
use_onnx = kwargs.pop("use_onnx", None)
|
1018 |
-
load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
|
1019 |
-
|
1020 |
-
if low_cpu_mem_usage and not is_accelerate_available():
|
1021 |
-
low_cpu_mem_usage = False
|
1022 |
-
logger.warning(
|
1023 |
-
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
1024 |
-
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
1025 |
-
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
1026 |
-
" install accelerate\n```\n."
|
1027 |
-
)
|
1028 |
-
|
1029 |
-
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
1030 |
-
raise NotImplementedError(
|
1031 |
-
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
1032 |
-
" `low_cpu_mem_usage=False`."
|
1033 |
-
)
|
1034 |
-
|
1035 |
-
if device_map is not None and not is_torch_version(">=", "1.9.0"):
|
1036 |
-
raise NotImplementedError(
|
1037 |
-
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
1038 |
-
" `device_map=None`."
|
1039 |
-
)
|
1040 |
-
|
1041 |
-
if device_map is not None and not is_accelerate_available():
|
1042 |
-
raise NotImplementedError(
|
1043 |
-
"Using `device_map` requires the `accelerate` library. Please install it using: `pip install accelerate`."
|
1044 |
-
)
|
1045 |
-
|
1046 |
-
if device_map is not None and not isinstance(device_map, str):
|
1047 |
-
raise ValueError("`device_map` must be a string.")
|
1048 |
-
|
1049 |
-
if device_map is not None and device_map not in SUPPORTED_DEVICE_MAP:
|
1050 |
-
raise NotImplementedError(
|
1051 |
-
f"{device_map} not supported. Supported strategies are: {', '.join(SUPPORTED_DEVICE_MAP)}"
|
1052 |
-
)
|
1053 |
-
|
1054 |
-
if device_map is not None and device_map in SUPPORTED_DEVICE_MAP:
|
1055 |
-
if is_accelerate_version("<", "0.28.0"):
|
1056 |
-
raise NotImplementedError("Device placement requires `accelerate` version `0.28.0` or later.")
|
1057 |
-
|
1058 |
-
if low_cpu_mem_usage is False and device_map is not None:
|
1059 |
-
raise ValueError(
|
1060 |
-
f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
|
1061 |
-
" dispatching. Please make sure to set `low_cpu_mem_usage=True`."
|
1062 |
-
)
|
1063 |
-
|
1064 |
-
transformer = NextDiT.from_pretrained(f"{model_path}", subfolder="transformer", torch_dtype=torch.float32, cache_dir=cache_dir)
|
1065 |
-
vae = AutoencoderKL.from_pretrained(f"{model_path}", subfolder="vae", cache_dir=cache_dir)
|
1066 |
-
text_encoder = T5EncoderModel.from_pretrained(f"{model_path}", subfolder="text_encoder", torch_dtype=torch.float16, cache_dir=cache_dir)
|
1067 |
-
tokenizer = T5Tokenizer.from_pretrained(model_path, subfolder="tokenizer", cache_dir=cache_dir)
|
1068 |
-
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_path, subfolder="scheduler", cache_dir=cache_dir)
|
1069 |
-
|
1070 |
-
pipeline = cls(
|
1071 |
-
transformer=transformer,
|
1072 |
-
vae=vae,
|
1073 |
-
text_encoder=text_encoder,
|
1074 |
-
tokenizer=tokenizer,
|
1075 |
-
scheduler=scheduler,
|
1076 |
-
**kwargs
|
1077 |
-
)
|
1078 |
-
|
1079 |
-
return pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|