twodgirl commited on
Commit
65a7fea
1 Parent(s): 0784084

Remove inference lite files.

Browse files
onediffusion/LICENSE DELETED
@@ -1,407 +0,0 @@
1
- Attribution-NonCommercial 4.0 International
2
-
3
- =======================================================================
4
-
5
- Creative Commons Corporation ("Creative Commons") is not a law firm and
6
- does not provide legal services or legal advice. Distribution of
7
- Creative Commons public licenses does not create a lawyer-client or
8
- other relationship. Creative Commons makes its licenses and related
9
- information available on an "as-is" basis. Creative Commons gives no
10
- warranties regarding its licenses, any material licensed under their
11
- terms and conditions, or any related information. Creative Commons
12
- disclaims all liability for damages resulting from their use to the
13
- fullest extent possible.
14
-
15
- Using Creative Commons Public Licenses
16
-
17
- Creative Commons public licenses provide a standard set of terms and
18
- conditions that creators and other rights holders may use to share
19
- original works of authorship and other material subject to copyright
20
- and certain other rights specified in the public license below. The
21
- following considerations are for informational purposes only, are not
22
- exhaustive, and do not form part of our licenses.
23
-
24
- Considerations for licensors: Our public licenses are
25
- intended for use by those authorized to give the public
26
- permission to use material in ways otherwise restricted by
27
- copyright and certain other rights. Our licenses are
28
- irrevocable. Licensors should read and understand the terms
29
- and conditions of the license they choose before applying it.
30
- Licensors should also secure all rights necessary before
31
- applying our licenses so that the public can reuse the
32
- material as expected. Licensors should clearly mark any
33
- material not subject to the license. This includes other CC-
34
- licensed material, or material used under an exception or
35
- limitation to copyright. More considerations for licensors:
36
- wiki.creativecommons.org/Considerations_for_licensors
37
-
38
- Considerations for the public: By using one of our public
39
- licenses, a licensor grants the public permission to use the
40
- licensed material under specified terms and conditions. If
41
- the licensor's permission is not necessary for any reason--for
42
- example, because of any applicable exception or limitation to
43
- copyright--then that use is not regulated by the license. Our
44
- licenses grant only permissions under copyright and certain
45
- other rights that a licensor has authority to grant. Use of
46
- the licensed material may still be restricted for other
47
- reasons, including because others have copyright or other
48
- rights in the material. A licensor may make special requests,
49
- such as asking that all changes be marked or described.
50
- Although not required by our licenses, you are encouraged to
51
- respect those requests where reasonable. More considerations
52
- for the public:
53
- wiki.creativecommons.org/Considerations_for_licensees
54
-
55
- =======================================================================
56
-
57
- Creative Commons Attribution-NonCommercial 4.0 International Public
58
- License
59
-
60
- By exercising the Licensed Rights (defined below), You accept and agree
61
- to be bound by the terms and conditions of this Creative Commons
62
- Attribution-NonCommercial 4.0 International Public License ("Public
63
- License"). To the extent this Public License may be interpreted as a
64
- contract, You are granted the Licensed Rights in consideration of Your
65
- acceptance of these terms and conditions, and the Licensor grants You
66
- such rights in consideration of benefits the Licensor receives from
67
- making the Licensed Material available under these terms and
68
- conditions.
69
-
70
-
71
- Section 1 -- Definitions.
72
-
73
- a. Adapted Material means material subject to Copyright and Similar
74
- Rights that is derived from or based upon the Licensed Material
75
- and in which the Licensed Material is translated, altered,
76
- arranged, transformed, or otherwise modified in a manner requiring
77
- permission under the Copyright and Similar Rights held by the
78
- Licensor. For purposes of this Public License, where the Licensed
79
- Material is a musical work, performance, or sound recording,
80
- Adapted Material is always produced where the Licensed Material is
81
- synched in timed relation with a moving image.
82
-
83
- b. Adapter's License means the license You apply to Your Copyright
84
- and Similar Rights in Your contributions to Adapted Material in
85
- accordance with the terms and conditions of this Public License.
86
-
87
- c. Copyright and Similar Rights means copyright and/or similar rights
88
- closely related to copyright including, without limitation,
89
- performance, broadcast, sound recording, and Sui Generis Database
90
- Rights, without regard to how the rights are labeled or
91
- categorized. For purposes of this Public License, the rights
92
- specified in Section 2(b)(1)-(2) are not Copyright and Similar
93
- Rights.
94
- d. Effective Technological Measures means those measures that, in the
95
- absence of proper authority, may not be circumvented under laws
96
- fulfilling obligations under Article 11 of the WIPO Copyright
97
- Treaty adopted on December 20, 1996, and/or similar international
98
- agreements.
99
-
100
- e. Exceptions and Limitations means fair use, fair dealing, and/or
101
- any other exception or limitation to Copyright and Similar Rights
102
- that applies to Your use of the Licensed Material.
103
-
104
- f. Licensed Material means the artistic or literary work, database,
105
- or other material to which the Licensor applied this Public
106
- License.
107
-
108
- g. Licensed Rights means the rights granted to You subject to the
109
- terms and conditions of this Public License, which are limited to
110
- all Copyright and Similar Rights that apply to Your use of the
111
- Licensed Material and that the Licensor has authority to license.
112
-
113
- h. Licensor means the individual(s) or entity(ies) granting rights
114
- under this Public License.
115
-
116
- i. NonCommercial means not primarily intended for or directed towards
117
- commercial advantage or monetary compensation. For purposes of
118
- this Public License, the exchange of the Licensed Material for
119
- other material subject to Copyright and Similar Rights by digital
120
- file-sharing or similar means is NonCommercial provided there is
121
- no payment of monetary compensation in connection with the
122
- exchange.
123
-
124
- j. Share means to provide material to the public by any means or
125
- process that requires permission under the Licensed Rights, such
126
- as reproduction, public display, public performance, distribution,
127
- dissemination, communication, or importation, and to make material
128
- available to the public including in ways that members of the
129
- public may access the material from a place and at a time
130
- individually chosen by them.
131
-
132
- k. Sui Generis Database Rights means rights other than copyright
133
- resulting from Directive 96/9/EC of the European Parliament and of
134
- the Council of 11 March 1996 on the legal protection of databases,
135
- as amended and/or succeeded, as well as other essentially
136
- equivalent rights anywhere in the world.
137
-
138
- l. You means the individual or entity exercising the Licensed Rights
139
- under this Public License. Your has a corresponding meaning.
140
-
141
-
142
- Section 2 -- Scope.
143
-
144
- a. License grant.
145
-
146
- 1. Subject to the terms and conditions of this Public License,
147
- the Licensor hereby grants You a worldwide, royalty-free,
148
- non-sublicensable, non-exclusive, irrevocable license to
149
- exercise the Licensed Rights in the Licensed Material to:
150
-
151
- a. reproduce and Share the Licensed Material, in whole or
152
- in part, for NonCommercial purposes only; and
153
-
154
- b. produce, reproduce, and Share Adapted Material for
155
- NonCommercial purposes only.
156
-
157
- 2. Exceptions and Limitations. For the avoidance of doubt, where
158
- Exceptions and Limitations apply to Your use, this Public
159
- License does not apply, and You do not need to comply with
160
- its terms and conditions.
161
-
162
- 3. Term. The term of this Public License is specified in Section
163
- 6(a).
164
-
165
- 4. Media and formats; technical modifications allowed. The
166
- Licensor authorizes You to exercise the Licensed Rights in
167
- all media and formats whether now known or hereafter created,
168
- and to make technical modifications necessary to do so. The
169
- Licensor waives and/or agrees not to assert any right or
170
- authority to forbid You from making technical modifications
171
- necessary to exercise the Licensed Rights, including
172
- technical modifications necessary to circumvent Effective
173
- Technological Measures. For purposes of this Public License,
174
- simply making modifications authorized by this Section 2(a)
175
- (4) never produces Adapted Material.
176
-
177
- 5. Downstream recipients.
178
-
179
- a. Offer from the Licensor -- Licensed Material. Every
180
- recipient of the Licensed Material automatically
181
- receives an offer from the Licensor to exercise the
182
- Licensed Rights under the terms and conditions of this
183
- Public License.
184
-
185
- b. No downstream restrictions. You may not offer or impose
186
- any additional or different terms or conditions on, or
187
- apply any Effective Technological Measures to, the
188
- Licensed Material if doing so restricts exercise of the
189
- Licensed Rights by any recipient of the Licensed
190
- Material.
191
-
192
- 6. No endorsement. Nothing in this Public License constitutes or
193
- may be construed as permission to assert or imply that You
194
- are, or that Your use of the Licensed Material is, connected
195
- with, or sponsored, endorsed, or granted official status by,
196
- the Licensor or others designated to receive attribution as
197
- provided in Section 3(a)(1)(A)(i).
198
-
199
- b. Other rights.
200
-
201
- 1. Moral rights, such as the right of integrity, are not
202
- licensed under this Public License, nor are publicity,
203
- privacy, and/or other similar personality rights; however, to
204
- the extent possible, the Licensor waives and/or agrees not to
205
- assert any such rights held by the Licensor to the limited
206
- extent necessary to allow You to exercise the Licensed
207
- Rights, but not otherwise.
208
-
209
- 2. Patent and trademark rights are not licensed under this
210
- Public License.
211
-
212
- 3. To the extent possible, the Licensor waives any right to
213
- collect royalties from You for the exercise of the Licensed
214
- Rights, whether directly or through a collecting society
215
- under any voluntary or waivable statutory or compulsory
216
- licensing scheme. In all other cases the Licensor expressly
217
- reserves any right to collect such royalties, including when
218
- the Licensed Material is used other than for NonCommercial
219
- purposes.
220
-
221
-
222
- Section 3 -- License Conditions.
223
-
224
- Your exercise of the Licensed Rights is expressly made subject to the
225
- following conditions.
226
-
227
- a. Attribution.
228
-
229
- 1. If You Share the Licensed Material (including in modified
230
- form), You must:
231
-
232
- a. retain the following if it is supplied by the Licensor
233
- with the Licensed Material:
234
-
235
- i. identification of the creator(s) of the Licensed
236
- Material and any others designated to receive
237
- attribution, in any reasonable manner requested by
238
- the Licensor (including by pseudonym if
239
- designated);
240
-
241
- ii. a copyright notice;
242
-
243
- iii. a notice that refers to this Public License;
244
-
245
- iv. a notice that refers to the disclaimer of
246
- warranties;
247
-
248
- v. a URI or hyperlink to the Licensed Material to the
249
- extent reasonably practicable;
250
-
251
- b. indicate if You modified the Licensed Material and
252
- retain an indication of any previous modifications; and
253
-
254
- c. indicate the Licensed Material is licensed under this
255
- Public License, and include the text of, or the URI or
256
- hyperlink to, this Public License.
257
-
258
- 2. You may satisfy the conditions in Section 3(a)(1) in any
259
- reasonable manner based on the medium, means, and context in
260
- which You Share the Licensed Material. For example, it may be
261
- reasonable to satisfy the conditions by providing a URI or
262
- hyperlink to a resource that includes the required
263
- information.
264
-
265
- 3. If requested by the Licensor, You must remove any of the
266
- information required by Section 3(a)(1)(A) to the extent
267
- reasonably practicable.
268
-
269
- 4. If You Share Adapted Material You produce, the Adapter's
270
- License You apply must not prevent recipients of the Adapted
271
- Material from complying with this Public License.
272
-
273
-
274
- Section 4 -- Sui Generis Database Rights.
275
-
276
- Where the Licensed Rights include Sui Generis Database Rights that
277
- apply to Your use of the Licensed Material:
278
-
279
- a. for the avoidance of doubt, Section 2(a)(1) grants You the right
280
- to extract, reuse, reproduce, and Share all or a substantial
281
- portion of the contents of the database for NonCommercial purposes
282
- only;
283
-
284
- b. if You include all or a substantial portion of the database
285
- contents in a database in which You have Sui Generis Database
286
- Rights, then the database in which You have Sui Generis Database
287
- Rights (but not its individual contents) is Adapted Material; and
288
-
289
- c. You must comply with the conditions in Section 3(a) if You Share
290
- all or a substantial portion of the contents of the database.
291
-
292
- For the avoidance of doubt, this Section 4 supplements and does not
293
- replace Your obligations under this Public License where the Licensed
294
- Rights include other Copyright and Similar Rights.
295
-
296
-
297
- Section 5 -- Disclaimer of Warranties and Limitation of Liability.
298
-
299
- a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
300
- EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
301
- AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
302
- ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
303
- IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
304
- WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
305
- PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
306
- ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
307
- KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
308
- ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
309
-
310
- b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
311
- TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
312
- NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
313
- INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
314
- COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
315
- USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
316
- ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
317
- DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
318
- IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
319
-
320
- c. The disclaimer of warranties and limitation of liability provided
321
- above shall be interpreted in a manner that, to the extent
322
- possible, most closely approximates an absolute disclaimer and
323
- waiver of all liability.
324
-
325
-
326
- Section 6 -- Term and Termination.
327
-
328
- a. This Public License applies for the term of the Copyright and
329
- Similar Rights licensed here. However, if You fail to comply with
330
- this Public License, then Your rights under this Public License
331
- terminate automatically.
332
-
333
- b. Where Your right to use the Licensed Material has terminated under
334
- Section 6(a), it reinstates:
335
-
336
- 1. automatically as of the date the violation is cured, provided
337
- it is cured within 30 days of Your discovery of the
338
- violation; or
339
-
340
- 2. upon express reinstatement by the Licensor.
341
-
342
- For the avoidance of doubt, this Section 6(b) does not affect any
343
- right the Licensor may have to seek remedies for Your violations
344
- of this Public License.
345
-
346
- c. For the avoidance of doubt, the Licensor may also offer the
347
- Licensed Material under separate terms or conditions or stop
348
- distributing the Licensed Material at any time; however, doing so
349
- will not terminate this Public License.
350
-
351
- d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
352
- License.
353
-
354
-
355
- Section 7 -- Other Terms and Conditions.
356
-
357
- a. The Licensor shall not be bound by any additional or different
358
- terms or conditions communicated by You unless expressly agreed.
359
-
360
- b. Any arrangements, understandings, or agreements regarding the
361
- Licensed Material not stated herein are separate from and
362
- independent of the terms and conditions of this Public License.
363
-
364
-
365
- Section 8 -- Interpretation.
366
-
367
- a. For the avoidance of doubt, this Public License does not, and
368
- shall not be interpreted to, reduce, limit, restrict, or impose
369
- conditions on any use of the Licensed Material that could lawfully
370
- be made without permission under this Public License.
371
-
372
- b. To the extent possible, if any provision of this Public License is
373
- deemed unenforceable, it shall be automatically reformed to the
374
- minimum extent necessary to make it enforceable. If the provision
375
- cannot be reformed, it shall be severed from this Public License
376
- without affecting the enforceability of the remaining terms and
377
- conditions.
378
-
379
- c. No term or condition of this Public License will be waived and no
380
- failure to comply consented to unless expressly agreed to by the
381
- Licensor.
382
-
383
- d. Nothing in this Public License constitutes or may be interpreted
384
- as a limitation upon, or waiver of, any privileges and immunities
385
- that apply to the Licensor or You, including from the legal
386
- processes of any jurisdiction or authority.
387
-
388
- =======================================================================
389
-
390
- Creative Commons is not a party to its public
391
- licenses. Notwithstanding, Creative Commons may elect to apply one of
392
- its public licenses to material it publishes and in those instances
393
- will be considered the “Licensor.” The text of the Creative Commons
394
- public licenses is dedicated to the public domain under the CC0 Public
395
- Domain Dedication. Except for the limited purpose of indicating that
396
- material is shared under a Creative Commons public license or as
397
- otherwise permitted by the Creative Commons policies published at
398
- creativecommons.org/policies, Creative Commons does not authorize the
399
- use of the trademark "Creative Commons" or any other trademark or logo
400
- of Creative Commons without its prior written consent including,
401
- without limitation, in connection with any unauthorized modifications
402
- to any of its public licenses or any other arrangements,
403
- understandings, or agreements concerning use of licensed material. For
404
- the avoidance of doubt, this paragraph does not form part of the
405
- public licenses.
406
-
407
- Creative Commons may be contacted at creativecommons.org.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
onediffusion/__init__.py DELETED
File without changes
onediffusion/dataset/__init__.py DELETED
File without changes
onediffusion/dataset/utils.py DELETED
@@ -1,175 +0,0 @@
1
-
2
- ASPECT_RATIO_2880 = {
3
- '0.25': [1408.0, 5760.0], '0.26': [1408.0, 5568.0], '0.27': [1408.0, 5376.0], '0.28': [1408.0, 5184.0],
4
- '0.32': [1600.0, 4992.0], '0.33': [1600.0, 4800.0], '0.34': [1600.0, 4672.0], '0.4': [1792.0, 4480.0],
5
- '0.42': [1792.0, 4288.0], '0.47': [1920.0, 4096.0], '0.49': [1920.0, 3904.0], '0.51': [1920.0, 3776.0],
6
- '0.55': [2112.0, 3840.0], '0.59': [2112.0, 3584.0], '0.68': [2304.0, 3392.0], '0.72': [2304.0, 3200.0],
7
- '0.78': [2496.0, 3200.0], '0.83': [2496.0, 3008.0], '0.89': [2688.0, 3008.0], '0.93': [2688.0, 2880.0],
8
- '1.0': [2880.0, 2880.0], '1.07': [2880.0, 2688.0], '1.12': [3008.0, 2688.0], '1.21': [3008.0, 2496.0],
9
- '1.28': [3200.0, 2496.0], '1.39': [3200.0, 2304.0], '1.47': [3392.0, 2304.0], '1.7': [3584.0, 2112.0],
10
- '1.82': [3840.0, 2112.0], '2.03': [3904.0, 1920.0], '2.13': [4096.0, 1920.0], '2.39': [4288.0, 1792.0],
11
- '2.5': [4480.0, 1792.0], '2.92': [4672.0, 1600.0], '3.0': [4800.0, 1600.0], '3.12': [4992.0, 1600.0],
12
- '3.68': [5184.0, 1408.0], '3.82': [5376.0, 1408.0], '3.95': [5568.0, 1408.0], '4.0': [5760.0, 1408.0]
13
- }
14
-
15
- ASPECT_RATIO_2048 = {
16
- '0.25': [1024.0, 4096.0], '0.26': [1024.0, 3968.0], '0.27': [1024.0, 3840.0], '0.28': [1024.0, 3712.0],
17
- '0.32': [1152.0, 3584.0], '0.33': [1152.0, 3456.0], '0.35': [1152.0, 3328.0], '0.4': [1280.0, 3200.0],
18
- '0.42': [1280.0, 3072.0], '0.48': [1408.0, 2944.0], '0.5': [1408.0, 2816.0], '0.52': [1408.0, 2688.0],
19
- '0.57': [1536.0, 2688.0], '0.6': [1536.0, 2560.0], '0.68': [1664.0, 2432.0], '0.72': [1664.0, 2304.0],
20
- '0.78': [1792.0, 2304.0], '0.82': [1792.0, 2176.0], '0.88': [1920.0, 2176.0], '0.94': [1920.0, 2048.0],
21
- '1.0': [2048.0, 2048.0], '1.07': [2048.0, 1920.0], '1.13': [2176.0, 1920.0], '1.21': [2176.0, 1792.0],
22
- '1.29': [2304.0, 1792.0], '1.38': [2304.0, 1664.0], '1.46': [2432.0, 1664.0], '1.67': [2560.0, 1536.0],
23
- '1.75': [2688.0, 1536.0], '2.0': [2816.0, 1408.0], '2.09': [2944.0, 1408.0], '2.4': [3072.0, 1280.0],
24
- '2.5': [3200.0, 1280.0], '2.89': [3328.0, 1152.0], '3.0': [3456.0, 1152.0], '3.11': [3584.0, 1152.0],
25
- '3.62': [3712.0, 1024.0], '3.75': [3840.0, 1024.0], '3.88': [3968.0, 1024.0], '4.0': [4096.0, 1024.0]
26
- }
27
-
28
- ASPECT_RATIO_1024 = {
29
- '0.25': [512., 2048.], '0.26': [512., 1984.], '0.27': [512., 1920.], '0.28': [512., 1856.],
30
- '0.32': [576., 1792.], '0.33': [576., 1728.], '0.35': [576., 1664.], '0.4': [640., 1600.],
31
- '0.42': [640., 1536.], '0.48': [704., 1472.], '0.5': [704., 1408.], '0.52': [704., 1344.],
32
- '0.57': [768., 1344.], '0.6': [768., 1280.], '0.68': [832., 1216.], '0.72': [832., 1152.],
33
- '0.78': [896., 1152.], '0.82': [896., 1088.], '0.88': [960., 1088.], '0.94': [960., 1024.],
34
- '1.0': [1024., 1024.], '1.07': [1024., 960.], '1.13': [1088., 960.], '1.21': [1088., 896.],
35
- '1.29': [1152., 896.], '1.38': [1152., 832.], '1.46': [1216., 832.], '1.67': [1280., 768.],
36
- '1.75': [1344., 768.], '2.0': [1408., 704.], '2.09': [1472., 704.], '2.4': [1536., 640.],
37
- '2.5': [1600., 640.], '2.89': [1664., 576.], '3.0': [1728., 576.], '3.11': [1792., 576.],
38
- '3.62': [1856., 512.], '3.75': [1920., 512.], '3.88': [1984., 512.], '4.0': [2048., 512.],
39
- }
40
-
41
- ASPECT_RATIO_512 = {
42
- '0.25': [256.0, 1024.0], '0.26': [256.0, 992.0], '0.27': [256.0, 960.0], '0.28': [256.0, 928.0],
43
- '0.32': [288.0, 896.0], '0.33': [288.0, 864.0], '0.35': [288.0, 832.0], '0.4': [320.0, 800.0],
44
- '0.42': [320.0, 768.0], '0.48': [352.0, 736.0], '0.5': [352.0, 704.0], '0.52': [352.0, 672.0],
45
- '0.57': [384.0, 672.0], '0.6': [384.0, 640.0], '0.68': [416.0, 608.0], '0.72': [416.0, 576.0],
46
- '0.78': [448.0, 576.0], '0.82': [448.0, 544.0], '0.88': [480.0, 544.0], '0.94': [480.0, 512.0],
47
- '1.0': [512.0, 512.0], '1.07': [512.0, 480.0], '1.13': [544.0, 480.0], '1.21': [544.0, 448.0],
48
- '1.29': [576.0, 448.0], '1.38': [576.0, 416.0], '1.46': [608.0, 416.0], '1.67': [640.0, 384.0],
49
- '1.75': [672.0, 384.0], '2.0': [704.0, 352.0], '2.09': [736.0, 352.0], '2.4': [768.0, 320.0],
50
- '2.5': [800.0, 320.0], '2.89': [832.0, 288.0], '3.0': [864.0, 288.0], '3.11': [896.0, 288.0],
51
- '3.62': [928.0, 256.0], '3.75': [960.0, 256.0], '3.88': [992.0, 256.0], '4.0': [1024.0, 256.0]
52
- }
53
-
54
-
55
- ASPECT_RATIO_384 = {
56
- '0.25': [192.0, 768.0],
57
- '0.26': [192.0, 736.0],
58
- '0.27': [208.0, 768.0],
59
- '0.28': [208.0, 736.0],
60
- '0.33': [240.0, 720.0],
61
- '0.4': [256.0, 640.0],
62
- '0.42': [304.0, 720.0],
63
- '0.48': [368.0, 768.0],
64
- '0.5': [384.0, 768.0],
65
- '0.52': [384.0, 736.0],
66
- '0.57': [384.0, 672.0],
67
- '0.6': [384.0, 640.0],
68
- '0.73': [384.0, 528.0],
69
- '0.77': [384.0, 496.0],
70
- '0.83': [384.0, 464.0],
71
- '0.89': [384.0, 432.0],
72
- '0.92': [384.0, 416.0],
73
- '1.0': [384.0, 384.0],
74
- '1.09': [384.0, 352.0],
75
- '1.14': [384.0, 336.0],
76
- '1.2': [384.0, 320.0],
77
- '1.26': [384.0, 304.0],
78
- '1.33': [384.0, 288.0],
79
- '1.41': [384.0, 272.0],
80
- '1.6': [384.0, 240.0],
81
- '1.71': [384.0, 224.0],
82
- '2.0': [384.0, 192.0],
83
- '2.4': [384.0, 160.0],
84
- '2.88': [368.0, 128.0],
85
- '3.0': [384.0, 128.0],
86
- '3.43': [384.0, 112.0],
87
- '4.0': [384.0, 96.0]
88
- }
89
-
90
- ASPECT_RATIO_256 = {
91
- '0.25': [128.0, 512.0], '0.26': [128.0, 496.0], '0.27': [128.0, 480.0], '0.28': [128.0, 464.0],
92
- '0.32': [144.0, 448.0], '0.33': [144.0, 432.0], '0.35': [144.0, 416.0], '0.4': [160.0, 400.0],
93
- '0.42': [160.0, 384.0], '0.48': [176.0, 368.0], '0.5': [176.0, 352.0], '0.52': [176.0, 336.0],
94
- '0.57': [192.0, 336.0], '0.6': [192.0, 320.0], '0.68': [208.0, 304.0], '0.72': [208.0, 288.0],
95
- '0.78': [224.0, 288.0], '0.82': [224.0, 272.0], '0.88': [240.0, 272.0], '0.94': [240.0, 256.0],
96
- '1.0': [256.0, 256.0], '1.07': [256.0, 240.0], '1.13': [272.0, 240.0], '1.21': [272.0, 224.0],
97
- '1.29': [288.0, 224.0], '1.38': [288.0, 208.0], '1.46': [304.0, 208.0], '1.67': [320.0, 192.0],
98
- '1.75': [336.0, 192.0], '2.0': [352.0, 176.0], '2.09': [368.0, 176.0], '2.4': [384.0, 160.0],
99
- '2.5': [400.0, 160.0], '2.89': [416.0, 144.0], '3.0': [432.0, 144.0], '3.11': [448.0, 144.0],
100
- '3.62': [464.0, 128.0], '3.75': [480.0, 128.0], '3.88': [496.0, 128.0], '4.0': [512.0, 128.0]
101
- }
102
-
103
- ASPECT_RATIO_256_TEST = {
104
- '0.25': [128.0, 512.0], '0.28': [128.0, 464.0],
105
- '0.32': [144.0, 448.0], '0.33': [144.0, 432.0], '0.35': [144.0, 416.0], '0.4': [160.0, 400.0],
106
- '0.42': [160.0, 384.0], '0.48': [176.0, 368.0], '0.5': [176.0, 352.0], '0.52': [176.0, 336.0],
107
- '0.57': [192.0, 336.0], '0.6': [192.0, 320.0], '0.68': [208.0, 304.0], '0.72': [208.0, 288.0],
108
- '0.78': [224.0, 288.0], '0.82': [224.0, 272.0], '0.88': [240.0, 272.0], '0.94': [240.0, 256.0],
109
- '1.0': [256.0, 256.0], '1.07': [256.0, 240.0], '1.13': [272.0, 240.0], '1.21': [272.0, 224.0],
110
- '1.29': [288.0, 224.0], '1.38': [288.0, 208.0], '1.46': [304.0, 208.0], '1.67': [320.0, 192.0],
111
- '1.75': [336.0, 192.0], '2.0': [352.0, 176.0], '2.09': [368.0, 176.0], '2.4': [384.0, 160.0],
112
- '2.5': [400.0, 160.0], '3.0': [432.0, 144.0],
113
- '4.0': [512.0, 128.0]
114
- }
115
-
116
- ASPECT_RATIO_512_TEST = {
117
- '0.25': [256.0, 1024.0], '0.28': [256.0, 928.0],
118
- '0.32': [288.0, 896.0], '0.33': [288.0, 864.0], '0.35': [288.0, 832.0], '0.4': [320.0, 800.0],
119
- '0.42': [320.0, 768.0], '0.48': [352.0, 736.0], '0.5': [352.0, 704.0], '0.52': [352.0, 672.0],
120
- '0.57': [384.0, 672.0], '0.6': [384.0, 640.0], '0.68': [416.0, 608.0], '0.72': [416.0, 576.0],
121
- '0.78': [448.0, 576.0], '0.82': [448.0, 544.0], '0.88': [480.0, 544.0], '0.94': [480.0, 512.0],
122
- '1.0': [512.0, 512.0], '1.07': [512.0, 480.0], '1.13': [544.0, 480.0], '1.21': [544.0, 448.0],
123
- '1.29': [576.0, 448.0], '1.38': [576.0, 416.0], '1.46': [608.0, 416.0], '1.67': [640.0, 384.0],
124
- '1.75': [672.0, 384.0], '2.0': [704.0, 352.0], '2.09': [736.0, 352.0], '2.4': [768.0, 320.0],
125
- '2.5': [800.0, 320.0], '3.0': [864.0, 288.0],
126
- '4.0': [1024.0, 256.0]
127
- }
128
-
129
- ASPECT_RATIO_1024_TEST = {
130
- '0.25': [512., 2048.], '0.28': [512., 1856.],
131
- '0.32': [576., 1792.], '0.33': [576., 1728.], '0.35': [576., 1664.], '0.4': [640., 1600.],
132
- '0.42': [640., 1536.], '0.48': [704., 1472.], '0.5': [704., 1408.], '0.52': [704., 1344.],
133
- '0.57': [768., 1344.], '0.6': [768., 1280.], '0.68': [832., 1216.], '0.72': [832., 1152.],
134
- '0.78': [896., 1152.], '0.82': [896., 1088.], '0.88': [960., 1088.], '0.94': [960., 1024.],
135
- '1.0': [1024., 1024.], '1.07': [1024., 960.], '1.13': [1088., 960.], '1.21': [1088., 896.],
136
- '1.29': [1152., 896.], '1.38': [1152., 832.], '1.46': [1216., 832.], '1.67': [1280., 768.],
137
- '1.75': [1344., 768.], '2.0': [1408., 704.], '2.09': [1472., 704.], '2.4': [1536., 640.],
138
- '2.5': [1600., 640.], '3.0': [1728., 576.],
139
- '4.0': [2048., 512.],
140
- }
141
-
142
- ASPECT_RATIO_2048_TEST = {
143
- '0.25': [1024.0, 4096.0], '0.26': [1024.0, 3968.0],
144
- '0.32': [1152.0, 3584.0], '0.33': [1152.0, 3456.0], '0.35': [1152.0, 3328.0], '0.4': [1280.0, 3200.0],
145
- '0.42': [1280.0, 3072.0], '0.48': [1408.0, 2944.0], '0.5': [1408.0, 2816.0], '0.52': [1408.0, 2688.0],
146
- '0.57': [1536.0, 2688.0], '0.6': [1536.0, 2560.0], '0.68': [1664.0, 2432.0], '0.72': [1664.0, 2304.0],
147
- '0.78': [1792.0, 2304.0], '0.82': [1792.0, 2176.0], '0.88': [1920.0, 2176.0], '0.94': [1920.0, 2048.0],
148
- '1.0': [2048.0, 2048.0], '1.07': [2048.0, 1920.0], '1.13': [2176.0, 1920.0], '1.21': [2176.0, 1792.0],
149
- '1.29': [2304.0, 1792.0], '1.38': [2304.0, 1664.0], '1.46': [2432.0, 1664.0], '1.67': [2560.0, 1536.0],
150
- '1.75': [2688.0, 1536.0], '2.0': [2816.0, 1408.0], '2.09': [2944.0, 1408.0], '2.4': [3072.0, 1280.0],
151
- '2.5': [3200.0, 1280.0], '3.0': [3456.0, 1152.0],
152
- '4.0': [4096.0, 1024.0]
153
- }
154
-
155
- ASPECT_RATIO_2880_TEST = {
156
- '0.25': [2048.0, 8192.0], '0.26': [2048.0, 7936.0],
157
- '0.32': [2304.0, 7168.0], '0.33': [2304.0, 6912.0], '0.35': [2304.0, 6656.0], '0.4': [2560.0, 6400.0],
158
- '0.42': [2560.0, 6144.0], '0.48': [2816.0, 5888.0], '0.5': [2816.0, 5632.0], '0.52': [2816.0, 5376.0],
159
- '0.57': [3072.0, 5376.0], '0.6': [3072.0, 5120.0], '0.68': [3328.0, 4864.0], '0.72': [3328.0, 4608.0],
160
- '0.78': [3584.0, 4608.0], '0.82': [3584.0, 4352.0], '0.88': [3840.0, 4352.0], '0.94': [3840.0, 4096.0],
161
- '1.0': [4096.0, 4096.0], '1.07': [4096.0, 3840.0], '1.13': [4352.0, 3840.0], '1.21': [4352.0, 3584.0],
162
- '1.29': [4608.0, 3584.0], '1.38': [4608.0, 3328.0], '1.46': [4864.0, 3328.0], '1.67': [5120.0, 3072.0],
163
- '1.75': [5376.0, 3072.0], '2.0': [5632.0, 2816.0], '2.09': [5888.0, 2816.0], '2.4': [6144.0, 2560.0],
164
- '2.5': [6400.0, 2560.0], '3.0': [6912.0, 2304.0],
165
- '4.0': [8192.0, 2048.0],
166
- }
167
-
168
- def get_chunks(lst, n):
169
- for i in range(0, len(lst), n):
170
- yield lst[i:i + n]
171
-
172
- def get_closest_ratio(height: float, width: float, ratios: dict):
173
- aspect_ratio = height / width
174
- closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio))
175
- return ratios[closest_ratio], float(closest_ratio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
onediffusion/nextdit/__init__.py DELETED
File without changes
onediffusion/nextdit/layers.py DELETED
@@ -1,128 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
- import numpy as np
5
- from typing import Callable, Optional
6
- import warnings
7
-
8
- try:
9
- from apex.normalization import FusedRMSNorm as RMSNorm
10
- except ImportError:
11
- warnings.warn("Cannot import apex RMSNorm, switch to vanilla implementation")
12
-
13
-
14
- class RMSNorm(torch.nn.Module):
15
- def __init__(self, dim: int, eps: float = 1e-6):
16
- """
17
- Initialize the RMSNorm normalization layer.
18
- Args:
19
- dim (int): The dimension of the input tensor.
20
- eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
21
- Attributes:
22
- eps (float): A small value added to the denominator for numerical stability.
23
- weight (nn.Parameter): Learnable scaling parameter.
24
- """
25
- super().__init__()
26
- self.eps = eps
27
- self.weight = nn.Parameter(torch.ones(dim))
28
-
29
- def _norm(self, x):
30
- """
31
- Apply the RMSNorm normalization to the input tensor.
32
- Args:
33
- x (torch.Tensor): The input tensor.
34
- Returns:
35
- torch.Tensor: The normalized tensor.
36
- """
37
- return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
38
-
39
- def forward(self, x):
40
- """
41
- Forward pass through the RMSNorm layer.
42
- Args:
43
- x (torch.Tensor): The input tensor.
44
- Returns:
45
- torch.Tensor: The output tensor after applying RMSNorm.
46
- """
47
- output = self._norm(x.float()).type_as(x)
48
- return output * self.weight
49
-
50
-
51
- def modulate(x, scale):
52
- return x * (1 + scale.unsqueeze(1))
53
-
54
- class LLamaFeedForward(nn.Module):
55
- """
56
- Corresponds to the FeedForward layer in Next DiT.
57
- """
58
- def __init__(
59
- self,
60
- dim: int,
61
- hidden_dim: int,
62
- multiple_of: int,
63
- ffn_dim_multiplier: Optional[float] = None,
64
- zeros_initialize: bool = True,
65
- dtype: torch.dtype = torch.float32,
66
- ):
67
- super().__init__()
68
- self.dim = dim
69
- self.hidden_dim = hidden_dim
70
- self.multiple_of = multiple_of
71
- self.ffn_dim_multiplier = ffn_dim_multiplier
72
- self.zeros_initialize = zeros_initialize
73
- self.dtype = dtype
74
-
75
- # Compute hidden_dim based on the given formula
76
- hidden_dim_calculated = int(2 * self.hidden_dim / 3)
77
- if self.ffn_dim_multiplier is not None:
78
- hidden_dim_calculated = int(self.ffn_dim_multiplier * hidden_dim_calculated)
79
- hidden_dim_calculated = self.multiple_of * ((hidden_dim_calculated + self.multiple_of - 1) // self.multiple_of)
80
-
81
- # Define linear layers
82
- self.w1 = nn.Linear(self.dim, hidden_dim_calculated, bias=False)
83
- self.w2 = nn.Linear(hidden_dim_calculated, self.dim, bias=False)
84
- self.w3 = nn.Linear(self.dim, hidden_dim_calculated, bias=False)
85
-
86
- # Initialize weights
87
- if self.zeros_initialize:
88
- nn.init.zeros_(self.w2.weight)
89
- else:
90
- nn.init.xavier_uniform_(self.w2.weight)
91
- nn.init.xavier_uniform_(self.w1.weight)
92
- nn.init.xavier_uniform_(self.w3.weight)
93
-
94
- def _forward_silu_gating(self, x1, x3):
95
- return F.silu(x1) * x3
96
-
97
- def forward(self, x):
98
- return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
99
-
100
- class FinalLayer(nn.Module):
101
- """
102
- The final layer of Next-DiT.
103
- """
104
- def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
105
- super().__init__()
106
- self.hidden_size = hidden_size
107
- self.patch_size = patch_size
108
- self.out_channels = out_channels
109
-
110
- # LayerNorm without learnable parameters (elementwise_affine=False)
111
- self.norm_final = nn.LayerNorm(self.hidden_size, eps=1e-6, elementwise_affine=False)
112
- self.linear = nn.Linear(self.hidden_size, np.prod(self.patch_size) * self.out_channels, bias=True)
113
- nn.init.zeros_(self.linear.weight)
114
- nn.init.zeros_(self.linear.bias)
115
-
116
- self.adaLN_modulation = nn.Sequential(
117
- nn.SiLU(),
118
- nn.Linear(self.hidden_size, self.hidden_size),
119
- )
120
- # Initialize the last layer with zeros
121
- nn.init.zeros_(self.adaLN_modulation[1].weight)
122
- nn.init.zeros_(self.adaLN_modulation[1].bias)
123
-
124
- def forward(self, x, c):
125
- scale = self.adaLN_modulation(c)
126
- x = modulate(self.norm_final(x), scale)
127
- x = self.linear(x)
128
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
onediffusion/nextdit/modeling_nextdit.py DELETED
@@ -1,482 +0,0 @@
1
- from diffusers.configuration_utils import ConfigMixin, register_to_config
2
- from diffusers.models.modeling_utils import ModelMixin
3
- import einops
4
- import numpy as np
5
- import torch
6
- import torch.nn as nn
7
- import torch.nn.functional as F
8
- from .layers import LLamaFeedForward, RMSNorm
9
-
10
-
11
- def modulate(x, scale):
12
- return x * (1 + scale)
13
-
14
- class TimestepEmbedder(nn.Module):
15
- """
16
- Embeds scalar timesteps into vector representations.
17
- """
18
- def __init__(self, hidden_size, frequency_embedding_size=256):
19
- super().__init__()
20
- self.hidden_size = hidden_size
21
- self.frequency_embedding_size = frequency_embedding_size
22
- self.mlp = nn.Sequential(
23
- nn.Linear(self.frequency_embedding_size, self.hidden_size),
24
- nn.SiLU(),
25
- nn.Linear(self.hidden_size, self.hidden_size),
26
- )
27
-
28
- @staticmethod
29
- def timestep_embedding(t, dim, max_period=10000):
30
- """
31
- Create sinusoidal timestep embeddings.
32
- :param t: a 1-D Tensor of N indices, one per batch element.
33
- :param dim: the dimension of the output.
34
- :param max_period: controls the minimum frequency of the embeddings.
35
- :return: an (N, D) Tensor of positional embeddings.
36
- """
37
- half = dim // 2
38
- freqs = torch.exp(
39
- -np.log(max_period) * torch.arange(0, half, dtype=t.dtype) / half
40
- ).to(t.device)
41
- args = t[:, :, None] * freqs[None, :]
42
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
43
- if dim % 2:
44
- embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :, :1])], dim=-1)
45
- return embedding
46
-
47
- def forward(self, t):
48
- t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
49
- t_freq = t_freq.to(self.mlp[0].weight.dtype)
50
- return self.mlp(t_freq)
51
-
52
- class FinalLayer(nn.Module):
53
- def __init__(self, hidden_size, num_patches, out_channels):
54
- super().__init__()
55
- self.norm_final = nn.LayerNorm(hidden_size, eps=1e-6, elementwise_affine=False)
56
- self.linear = nn.Linear(hidden_size, num_patches * out_channels)
57
- self.adaLN_modulation = nn.Sequential(
58
- nn.SiLU(),
59
- nn.Linear(min(hidden_size, 1024), hidden_size),
60
- )
61
-
62
- def forward(self, x, c):
63
- scale = self.adaLN_modulation(c)
64
- x = modulate(self.norm_final(x), scale)
65
- x = self.linear(x)
66
- return x
67
-
68
- class Attention(nn.Module):
69
- def __init__(
70
- self,
71
- dim,
72
- n_heads,
73
- n_kv_heads=None,
74
- qk_norm=False,
75
- y_dim=0,
76
- base_seqlen=None,
77
- proportional_attn=False,
78
- attention_dropout=0.0,
79
- max_position_embeddings=384,
80
- ):
81
- super().__init__()
82
- self.dim = dim
83
- self.n_heads = n_heads
84
- self.n_kv_heads = n_kv_heads or n_heads
85
- self.qk_norm = qk_norm
86
- self.y_dim = y_dim
87
- self.base_seqlen = base_seqlen
88
- self.proportional_attn = proportional_attn
89
- self.attention_dropout = attention_dropout
90
- self.max_position_embeddings = max_position_embeddings
91
-
92
- self.head_dim = dim // n_heads
93
-
94
- self.wq = nn.Linear(dim, n_heads * self.head_dim, bias=False)
95
- self.wk = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False)
96
- self.wv = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False)
97
-
98
- if y_dim > 0:
99
- self.wk_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False)
100
- self.wv_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False)
101
- self.gate = nn.Parameter(torch.zeros(n_heads))
102
-
103
- self.wo = nn.Linear(n_heads * self.head_dim, dim, bias=False)
104
-
105
- if qk_norm:
106
- self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim)
107
- self.k_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim)
108
- if y_dim > 0:
109
- self.ky_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim, eps=1e-6)
110
- else:
111
- self.ky_norm = nn.Identity()
112
- else:
113
- self.q_norm = nn.Identity()
114
- self.k_norm = nn.Identity()
115
- self.ky_norm = nn.Identity()
116
-
117
-
118
- @staticmethod
119
- def apply_rotary_emb(xq, xk, freqs_cis):
120
- # xq, xk: [batch_size, seq_len, n_heads, head_dim]
121
- # freqs_cis: [1, seq_len, 1, head_dim]
122
- xq_ = xq.float().reshape(*xq.shape[:-1], -1, 2)
123
- xk_ = xk.float().reshape(*xk.shape[:-1], -1, 2)
124
-
125
- xq_complex = torch.view_as_complex(xq_)
126
- xk_complex = torch.view_as_complex(xk_)
127
-
128
- freqs_cis = freqs_cis.unsqueeze(2)
129
-
130
- # Apply freqs_cis
131
- xq_out = xq_complex * freqs_cis
132
- xk_out = xk_complex * freqs_cis
133
-
134
- # Convert back to real numbers
135
- xq_out = torch.view_as_real(xq_out).flatten(-2)
136
- xk_out = torch.view_as_real(xk_out).flatten(-2)
137
-
138
- return xq_out.type_as(xq), xk_out.type_as(xk)
139
-
140
- def forward(
141
- self,
142
- x,
143
- x_mask,
144
- freqs_cis,
145
- y=None,
146
- y_mask=None,
147
- init_cache=False,
148
- ):
149
- bsz, seqlen, _ = x.size()
150
- xq = self.wq(x)
151
- xk = self.wk(x)
152
- xv = self.wv(x)
153
-
154
- if x_mask is None:
155
- x_mask = torch.ones(bsz, seqlen, dtype=torch.bool, device=x.device)
156
- inp_dtype = xq.dtype
157
-
158
- xq = self.q_norm(xq)
159
- xk = self.k_norm(xk)
160
-
161
- xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim)
162
- xk = xk.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
163
- xv = xv.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
164
-
165
- if self.n_kv_heads != self.n_heads:
166
- n_rep = self.n_heads // self.n_kv_heads
167
- xk = xk.repeat_interleave(n_rep, dim=2)
168
- xv = xv.repeat_interleave(n_rep, dim=2)
169
-
170
- freqs_cis = freqs_cis.to(xq.device)
171
- xq, xk = self.apply_rotary_emb(xq, xk, freqs_cis)
172
-
173
- output = (
174
- F.scaled_dot_product_attention(
175
- xq.permute(0, 2, 1, 3),
176
- xk.permute(0, 2, 1, 3),
177
- xv.permute(0, 2, 1, 3),
178
- attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_heads, seqlen, -1),
179
- scale=None,
180
- )
181
- .permute(0, 2, 1, 3)
182
- .to(inp_dtype)
183
- )
184
-
185
-
186
- if hasattr(self, "wk_y"):
187
- yk = self.ky_norm(self.wk_y(y)).view(bsz, -1, self.n_kv_heads, self.head_dim)
188
- yv = self.wv_y(y).view(bsz, -1, self.n_kv_heads, self.head_dim)
189
- n_rep = self.n_heads // self.n_kv_heads
190
- # if n_rep >= 1:
191
- # yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
192
- # yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
193
- if n_rep >= 1:
194
- yk = einops.repeat(yk, "b l h d -> b l (repeat h) d", repeat=n_rep)
195
- yv = einops.repeat(yv, "b l h d -> b l (repeat h) d", repeat=n_rep)
196
- output_y = F.scaled_dot_product_attention(
197
- xq.permute(0, 2, 1, 3),
198
- yk.permute(0, 2, 1, 3),
199
- yv.permute(0, 2, 1, 3),
200
- y_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_heads, seqlen, -1).to(torch.bool),
201
- ).permute(0, 2, 1, 3)
202
- output_y = output_y * self.gate.tanh().view(1, 1, -1, 1)
203
- output = output + output_y
204
-
205
- output = output.flatten(-2)
206
- output = self.wo(output)
207
-
208
- return output.to(inp_dtype)
209
-
210
- class TransformerBlock(nn.Module):
211
- """
212
- Corresponds to the Transformer block in the JAX code.
213
- """
214
- def __init__(
215
- self,
216
- dim,
217
- n_heads,
218
- n_kv_heads,
219
- multiple_of,
220
- ffn_dim_multiplier,
221
- norm_eps,
222
- qk_norm,
223
- y_dim,
224
- max_position_embeddings,
225
- ):
226
- super().__init__()
227
- self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim=y_dim, max_position_embeddings=max_position_embeddings)
228
- self.feed_forward = LLamaFeedForward(
229
- dim=dim,
230
- hidden_dim=4 * dim,
231
- multiple_of=multiple_of,
232
- ffn_dim_multiplier=ffn_dim_multiplier,
233
- )
234
- self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
235
- self.attention_norm2 = RMSNorm(dim, eps=norm_eps)
236
- self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
237
- self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
238
- self.adaLN_modulation = nn.Sequential(
239
- nn.SiLU(),
240
- nn.Linear(min(dim, 1024), 4 * dim),
241
- )
242
- self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps)
243
-
244
- def forward(
245
- self,
246
- x,
247
- x_mask,
248
- freqs_cis,
249
- y,
250
- y_mask,
251
- adaln_input=None,
252
- ):
253
- if adaln_input is not None:
254
- scales_gates = self.adaLN_modulation(adaln_input)
255
- # TODO: Duong - check the dimension of chunking
256
- # scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1)
257
- scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1)
258
- x = x + torch.tanh(gate_msa) * self.attention_norm2(
259
- self.attention(
260
- modulate(self.attention_norm1(x), scale_msa), # ok
261
- x_mask,
262
- freqs_cis,
263
- self.attention_y_norm(y), # ok
264
- y_mask,
265
- )
266
- )
267
- x = x + torch.tanh(gate_mlp) * self.ffn_norm2(
268
- self.feed_forward(
269
- modulate(self.ffn_norm1(x), scale_mlp),
270
- )
271
- )
272
- else:
273
- x = x + self.attention_norm2(
274
- self.attention(
275
- self.attention_norm1(x),
276
- x_mask,
277
- freqs_cis,
278
- self.attention_y_norm(y),
279
- y_mask,
280
- )
281
- )
282
- x = x + self.ffn_norm2(self.feed_forward(self.ffn_norm1(x)))
283
- return x
284
-
285
-
286
- class NextDiT(ModelMixin, ConfigMixin):
287
- """
288
- Diffusion model with a Transformer backbone for joint image-video training.
289
- """
290
- @register_to_config
291
- def __init__(
292
- self,
293
- input_size=(1, 32, 32),
294
- patch_size=(1, 2, 2),
295
- in_channels=16,
296
- hidden_size=4096,
297
- depth=32,
298
- num_heads=32,
299
- num_kv_heads=None,
300
- multiple_of=256,
301
- ffn_dim_multiplier=None,
302
- norm_eps=1e-5,
303
- pred_sigma=False,
304
- caption_channels=4096,
305
- qk_norm=False,
306
- norm_type="rms",
307
- model_max_length=120,
308
- rotary_max_length=384,
309
- rotary_max_length_t=None
310
- ):
311
- super().__init__()
312
- self.input_size = input_size
313
- self.patch_size = patch_size
314
- self.in_channels = in_channels
315
- self.hidden_size = hidden_size
316
- self.depth = depth
317
- self.num_heads = num_heads
318
- self.num_kv_heads = num_kv_heads or num_heads
319
- self.multiple_of = multiple_of
320
- self.ffn_dim_multiplier = ffn_dim_multiplier
321
- self.norm_eps = norm_eps
322
- self.pred_sigma = pred_sigma
323
- self.caption_channels = caption_channels
324
- self.qk_norm = qk_norm
325
- self.norm_type = norm_type
326
- self.model_max_length = model_max_length
327
- self.rotary_max_length = rotary_max_length
328
- self.rotary_max_length_t = rotary_max_length_t
329
- self.out_channels = in_channels * 2 if pred_sigma else in_channels
330
-
331
- self.x_embedder = nn.Linear(np.prod(self.patch_size) * in_channels, hidden_size)
332
-
333
- self.t_embedder = TimestepEmbedder(min(hidden_size, 1024))
334
- self.y_embedder = nn.Sequential(
335
- nn.LayerNorm(caption_channels, eps=1e-6),
336
- nn.Linear(caption_channels, min(hidden_size, 1024)),
337
- )
338
-
339
- self.layers = nn.ModuleList([
340
- TransformerBlock(
341
- dim=hidden_size,
342
- n_heads=num_heads,
343
- n_kv_heads=self.num_kv_heads,
344
- multiple_of=multiple_of,
345
- ffn_dim_multiplier=ffn_dim_multiplier,
346
- norm_eps=norm_eps,
347
- qk_norm=qk_norm,
348
- y_dim=caption_channels,
349
- max_position_embeddings=rotary_max_length,
350
- )
351
- for _ in range(depth)
352
- ])
353
-
354
- self.final_layer = FinalLayer(
355
- hidden_size=hidden_size,
356
- num_patches=np.prod(patch_size),
357
- out_channels=self.out_channels,
358
- )
359
-
360
- assert (hidden_size // num_heads) % 6 == 0, "3d rope needs head dim to be divisible by 6"
361
-
362
- self.freqs_cis = self.precompute_freqs_cis(
363
- hidden_size // num_heads,
364
- self.rotary_max_length,
365
- end_t=self.rotary_max_length_t
366
- )
367
-
368
- def to(self, *args, **kwargs):
369
- self = super().to(*args, **kwargs)
370
- # self.freqs_cis = self.freqs_cis.to(*args, **kwargs)
371
- return self
372
-
373
- @staticmethod
374
- def precompute_freqs_cis(
375
- dim: int,
376
- end: int,
377
- end_t: int = None,
378
- theta: float = 10000.0,
379
- scale_factor: float = 1.0,
380
- scale_watershed: float = 1.0,
381
- timestep: float = 1.0,
382
- ):
383
- if timestep < scale_watershed:
384
- linear_factor = scale_factor
385
- ntk_factor = 1.0
386
- else:
387
- linear_factor = 1.0
388
- ntk_factor = scale_factor
389
-
390
- theta = theta * ntk_factor
391
- freqs = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor
392
-
393
- timestep = torch.arange(end, dtype=torch.float32)
394
- freqs = torch.outer(timestep, freqs).float()
395
- freqs_cis = torch.exp(1j * freqs)
396
-
397
- if end_t is not None:
398
- freqs_t = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor
399
- timestep_t = torch.arange(end_t, dtype=torch.float32)
400
- freqs_t = torch.outer(timestep_t, freqs_t).float()
401
- freqs_cis_t = torch.exp(1j * freqs_t)
402
- freqs_cis_t = freqs_cis_t.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1)
403
- else:
404
- end_t = end
405
- freqs_cis_t = freqs_cis.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1)
406
-
407
- freqs_cis_h = freqs_cis.view(1, end, 1, dim // 6).repeat(end_t, 1, end, 1)
408
- freqs_cis_w = freqs_cis.view(1, 1, end, dim // 6).repeat(end_t, end, 1, 1)
409
- freqs_cis = torch.cat([freqs_cis_t, freqs_cis_h, freqs_cis_w], dim=-1).view(end_t, end, end, -1)
410
- return freqs_cis
411
-
412
- def forward(
413
- self,
414
- samples,
415
- timesteps,
416
- encoder_hidden_states,
417
- encoder_attention_mask,
418
- scale_factor: float = 1.0, # scale_factor for rotary embedding
419
- scale_watershed: float = 1.0, # scale_watershed for rotary embedding
420
- ):
421
- if samples.ndim == 4: # B C H W
422
- samples = samples[:, None, ...] # B F C H W
423
-
424
- precomputed_freqs_cis = None
425
- if scale_factor != 1 or scale_watershed != 1:
426
- precomputed_freqs_cis = self.precompute_freqs_cis(
427
- self.hidden_size // self.num_heads,
428
- self.rotary_max_length,
429
- end_t=self.rotary_max_length_t,
430
- scale_factor=scale_factor,
431
- scale_watershed=scale_watershed,
432
- timestep=torch.max(timesteps.cpu()).item()
433
- )
434
-
435
- if len(timesteps.shape) == 5:
436
- t, *_ = self.patchify(timesteps, precomputed_freqs_cis)
437
- timesteps = t.mean(dim=-1)
438
- elif len(timesteps.shape) == 1:
439
- timesteps = timesteps[:, None, None, None, None].expand_as(samples)
440
- t, *_ = self.patchify(timesteps, precomputed_freqs_cis)
441
- timesteps = t.mean(dim=-1)
442
- samples, T, H, W, freqs_cis = self.patchify(samples, precomputed_freqs_cis)
443
- samples = self.x_embedder(samples)
444
- t = self.t_embedder(timesteps)
445
-
446
- encoder_attention_mask_float = encoder_attention_mask[..., None].float()
447
- encoder_hidden_states_pool = (encoder_hidden_states * encoder_attention_mask_float).sum(dim=1) / (encoder_attention_mask_float.sum(dim=1) + 1e-8)
448
- encoder_hidden_states_pool = encoder_hidden_states_pool.to(samples.dtype)
449
- y = self.y_embedder(encoder_hidden_states_pool)
450
- y = y.unsqueeze(1).expand(-1, samples.size(1), -1)
451
-
452
- adaln_input = t + y
453
-
454
- for block in self.layers:
455
- samples = block(samples, None, freqs_cis, encoder_hidden_states, encoder_attention_mask, adaln_input)
456
-
457
- samples = self.final_layer(samples, adaln_input)
458
- samples = self.unpatchify(samples, T, H, W)
459
-
460
- return samples
461
-
462
- def patchify(self, x, precompute_freqs_cis=None):
463
- # pytorch is C, H, W
464
- B, T, C, H, W = x.size()
465
- pT, pH, pW = self.patch_size
466
- x = x.view(B, T // pT, pT, C, H // pH, pH, W // pW, pW)
467
- x = x.permute(0, 1, 4, 6, 2, 5, 7, 3)
468
- x = x.reshape(B, -1, pT * pH * pW * C)
469
- if precompute_freqs_cis is None:
470
- freqs_cis = self.freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * self.freqs_cis.shape[3:])[None].to(x.device)
471
- else:
472
- freqs_cis = precompute_freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * precompute_freqs_cis.shape[3:])[None].to(x.device)
473
- return x, T // pT, H // pH, W // pW, freqs_cis
474
-
475
- def unpatchify(self, x, T, H, W):
476
- B = x.size(0)
477
- C = self.out_channels
478
- pT, pH, pW = self.patch_size
479
- x = x.view(B, T, H, W, pT, pH, pW, C)
480
- x = x.permute(0, 1, 4, 7, 2, 5, 3, 6)
481
- x = x.reshape(B, T * pT, C, H * pH, W * pW)
482
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
onediffusion/pipeline/__init__.py DELETED
File without changes
onediffusion/pipeline/image_processor.py DELETED
@@ -1,672 +0,0 @@
1
- # Copyright 2024 The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import math
16
- import warnings
17
- from typing import List, Optional, Tuple, Union
18
-
19
- import numpy as np
20
- import PIL.Image
21
- import torch
22
- import torch.nn.functional as F
23
- import torchvision.transforms as T
24
- from PIL import Image, ImageFilter, ImageOps
25
-
26
- from diffusers.configuration_utils import ConfigMixin, register_to_config
27
- from diffusers.utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
28
-
29
- # from onediffusion.dataset.transforms import CenterCropResizeImage
30
-
31
- PipelineImageInput = Union[
32
- PIL.Image.Image,
33
- np.ndarray,
34
- torch.Tensor,
35
- List[PIL.Image.Image],
36
- List[np.ndarray],
37
- List[torch.Tensor],
38
- ]
39
-
40
- PipelineDepthInput = PipelineImageInput
41
-
42
-
43
- def is_valid_image(image):
44
- return isinstance(image, PIL.Image.Image) or isinstance(image, (np.ndarray, torch.Tensor)) and image.ndim in (2, 3)
45
-
46
-
47
- def is_valid_image_imagelist(images):
48
- # check if the image input is one of the supported formats for image and image list:
49
- # it can be either one of below 3
50
- # (1) a 4d pytorch tensor or numpy array,
51
- # (2) a valid image: PIL.Image.Image, 2-d np.ndarray or torch.Tensor (grayscale image), 3-d np.ndarray or torch.Tensor
52
- # (3) a list of valid image
53
- if isinstance(images, (np.ndarray, torch.Tensor)) and images.ndim == 4:
54
- return True
55
- elif is_valid_image(images):
56
- return True
57
- elif isinstance(images, list):
58
- return all(is_valid_image(image) for image in images)
59
- return False
60
-
61
-
62
- class VaeImageProcessorOneDiffuser(ConfigMixin):
63
- """
64
- Image processor for VAE.
65
-
66
- Args:
67
- do_resize (`bool`, *optional*, defaults to `True`):
68
- Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
69
- `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
70
- vae_scale_factor (`int`, *optional*, defaults to `8`):
71
- VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
72
- resample (`str`, *optional*, defaults to `lanczos`):
73
- Resampling filter to use when resizing the image.
74
- do_normalize (`bool`, *optional*, defaults to `True`):
75
- Whether to normalize the image to [-1,1].
76
- do_binarize (`bool`, *optional*, defaults to `False`):
77
- Whether to binarize the image to 0/1.
78
- do_convert_rgb (`bool`, *optional*, defaults to be `False`):
79
- Whether to convert the images to RGB format.
80
- do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
81
- Whether to convert the images to grayscale format.
82
- """
83
-
84
- config_name = CONFIG_NAME
85
-
86
- @register_to_config
87
- def __init__(
88
- self,
89
- do_resize: bool = True,
90
- vae_scale_factor: int = 8,
91
- vae_latent_channels: int = 4,
92
- resample: str = "lanczos",
93
- do_normalize: bool = True,
94
- do_binarize: bool = False,
95
- do_convert_rgb: bool = False,
96
- do_convert_grayscale: bool = False,
97
- ):
98
- super().__init__()
99
- if do_convert_rgb and do_convert_grayscale:
100
- raise ValueError(
101
- "`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
102
- " if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
103
- " if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
104
- )
105
-
106
- @staticmethod
107
- def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
108
- """
109
- Convert a numpy image or a batch of images to a PIL image.
110
- """
111
- if images.ndim == 3:
112
- images = images[None, ...]
113
- images = (images * 255).round().astype("uint8")
114
- if images.shape[-1] == 1:
115
- # special case for grayscale (single channel) images
116
- pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
117
- else:
118
- pil_images = [Image.fromarray(image) for image in images]
119
-
120
- return pil_images
121
-
122
- @staticmethod
123
- def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
124
- """
125
- Convert a PIL image or a list of PIL images to NumPy arrays.
126
- """
127
- if not isinstance(images, list):
128
- images = [images]
129
- images = [np.array(image).astype(np.float32) / 255.0 for image in images]
130
- images = np.stack(images, axis=0)
131
-
132
- return images
133
-
134
- @staticmethod
135
- def numpy_to_pt(images: np.ndarray) -> torch.Tensor:
136
- """
137
- Convert a NumPy image to a PyTorch tensor.
138
- """
139
- if images.ndim == 3:
140
- images = images[..., None]
141
-
142
- images = torch.from_numpy(images.transpose(0, 3, 1, 2))
143
- return images
144
-
145
- @staticmethod
146
- def pt_to_numpy(images: torch.Tensor) -> np.ndarray:
147
- """
148
- Convert a PyTorch tensor to a NumPy image.
149
- """
150
- images = images.cpu().permute(0, 2, 3, 1).float().numpy()
151
- return images
152
-
153
- @staticmethod
154
- def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
155
- """
156
- Normalize an image array to [-1,1].
157
- """
158
- return 2.0 * images - 1.0
159
-
160
- @staticmethod
161
- def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
162
- """
163
- Denormalize an image array to [0,1].
164
- """
165
- return (images / 2 + 0.5).clamp(0, 1)
166
-
167
- @staticmethod
168
- def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
169
- """
170
- Converts a PIL image to RGB format.
171
- """
172
- image = image.convert("RGB")
173
-
174
- return image
175
-
176
- @staticmethod
177
- def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
178
- """
179
- Converts a PIL image to grayscale format.
180
- """
181
- image = image.convert("L")
182
-
183
- return image
184
-
185
- @staticmethod
186
- def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image:
187
- """
188
- Applies Gaussian blur to an image.
189
- """
190
- image = image.filter(ImageFilter.GaussianBlur(blur_factor))
191
-
192
- return image
193
-
194
- @staticmethod
195
- def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0):
196
- """
197
- Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect
198
- ratio of the original image; for example, if user drew mask in a 128x32 region, and the dimensions for
199
- processing are 512x512, the region will be expanded to 128x128.
200
-
201
- Args:
202
- mask_image (PIL.Image.Image): Mask image.
203
- width (int): Width of the image to be processed.
204
- height (int): Height of the image to be processed.
205
- pad (int, optional): Padding to be added to the crop region. Defaults to 0.
206
-
207
- Returns:
208
- tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and
209
- matches the original aspect ratio.
210
- """
211
-
212
- mask_image = mask_image.convert("L")
213
- mask = np.array(mask_image)
214
-
215
- # 1. find a rectangular region that contains all masked ares in an image
216
- h, w = mask.shape
217
- crop_left = 0
218
- for i in range(w):
219
- if not (mask[:, i] == 0).all():
220
- break
221
- crop_left += 1
222
-
223
- crop_right = 0
224
- for i in reversed(range(w)):
225
- if not (mask[:, i] == 0).all():
226
- break
227
- crop_right += 1
228
-
229
- crop_top = 0
230
- for i in range(h):
231
- if not (mask[i] == 0).all():
232
- break
233
- crop_top += 1
234
-
235
- crop_bottom = 0
236
- for i in reversed(range(h)):
237
- if not (mask[i] == 0).all():
238
- break
239
- crop_bottom += 1
240
-
241
- # 2. add padding to the crop region
242
- x1, y1, x2, y2 = (
243
- int(max(crop_left - pad, 0)),
244
- int(max(crop_top - pad, 0)),
245
- int(min(w - crop_right + pad, w)),
246
- int(min(h - crop_bottom + pad, h)),
247
- )
248
-
249
- # 3. expands crop region to match the aspect ratio of the image to be processed
250
- ratio_crop_region = (x2 - x1) / (y2 - y1)
251
- ratio_processing = width / height
252
-
253
- if ratio_crop_region > ratio_processing:
254
- desired_height = (x2 - x1) / ratio_processing
255
- desired_height_diff = int(desired_height - (y2 - y1))
256
- y1 -= desired_height_diff // 2
257
- y2 += desired_height_diff - desired_height_diff // 2
258
- if y2 >= mask_image.height:
259
- diff = y2 - mask_image.height
260
- y2 -= diff
261
- y1 -= diff
262
- if y1 < 0:
263
- y2 -= y1
264
- y1 -= y1
265
- if y2 >= mask_image.height:
266
- y2 = mask_image.height
267
- else:
268
- desired_width = (y2 - y1) * ratio_processing
269
- desired_width_diff = int(desired_width - (x2 - x1))
270
- x1 -= desired_width_diff // 2
271
- x2 += desired_width_diff - desired_width_diff // 2
272
- if x2 >= mask_image.width:
273
- diff = x2 - mask_image.width
274
- x2 -= diff
275
- x1 -= diff
276
- if x1 < 0:
277
- x2 -= x1
278
- x1 -= x1
279
- if x2 >= mask_image.width:
280
- x2 = mask_image.width
281
-
282
- return x1, y1, x2, y2
283
-
284
- def _resize_and_fill(
285
- self,
286
- image: PIL.Image.Image,
287
- width: int,
288
- height: int,
289
- ) -> PIL.Image.Image:
290
- """
291
- Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
292
- the image within the dimensions, filling empty with data from image.
293
-
294
- Args:
295
- image: The image to resize.
296
- width: The width to resize the image to.
297
- height: The height to resize the image to.
298
- """
299
-
300
- ratio = width / height
301
- src_ratio = image.width / image.height
302
-
303
- src_w = width if ratio < src_ratio else image.width * height // image.height
304
- src_h = height if ratio >= src_ratio else image.height * width // image.width
305
-
306
- resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
307
- res = Image.new("RGB", (width, height))
308
- res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
309
-
310
- if ratio < src_ratio:
311
- fill_height = height // 2 - src_h // 2
312
- if fill_height > 0:
313
- res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
314
- res.paste(
315
- resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)),
316
- box=(0, fill_height + src_h),
317
- )
318
- elif ratio > src_ratio:
319
- fill_width = width // 2 - src_w // 2
320
- if fill_width > 0:
321
- res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
322
- res.paste(
323
- resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)),
324
- box=(fill_width + src_w, 0),
325
- )
326
-
327
- return res
328
-
329
- def _resize_and_crop(
330
- self,
331
- image: PIL.Image.Image,
332
- width: int,
333
- height: int,
334
- ) -> PIL.Image.Image:
335
- """
336
- Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
337
- the image within the dimensions, cropping the excess.
338
-
339
- Args:
340
- image: The image to resize.
341
- width: The width to resize the image to.
342
- height: The height to resize the image to.
343
- """
344
- ratio = width / height
345
- src_ratio = image.width / image.height
346
-
347
- src_w = width if ratio > src_ratio else image.width * height // image.height
348
- src_h = height if ratio <= src_ratio else image.height * width // image.width
349
-
350
- resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
351
- res = Image.new("RGB", (width, height))
352
- res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
353
- return res
354
-
355
- def resize(
356
- self,
357
- image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
358
- height: int,
359
- width: int,
360
- resize_mode: str = "default", # "default", "fill", "crop"
361
- ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
362
- """
363
- Resize image.
364
-
365
- Args:
366
- image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
367
- The image input, can be a PIL image, numpy array or pytorch tensor.
368
- height (`int`):
369
- The height to resize to.
370
- width (`int`):
371
- The width to resize to.
372
- resize_mode (`str`, *optional*, defaults to `default`):
373
- The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit
374
- within the specified width and height, and it may not maintaining the original aspect ratio. If `fill`,
375
- will resize the image to fit within the specified width and height, maintaining the aspect ratio, and
376
- then center the image within the dimensions, filling empty with data from image. If `crop`, will resize
377
- the image to fit within the specified width and height, maintaining the aspect ratio, and then center
378
- the image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
379
- supported for PIL image input.
380
-
381
- Returns:
382
- `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
383
- The resized image.
384
- """
385
- if resize_mode != "default" and not isinstance(image, PIL.Image.Image):
386
- raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}")
387
- if isinstance(image, PIL.Image.Image):
388
- if resize_mode == "default":
389
- image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
390
- elif resize_mode == "fill":
391
- image = self._resize_and_fill(image, width, height)
392
- elif resize_mode == "crop":
393
- image = self._resize_and_crop(image, width, height)
394
- else:
395
- raise ValueError(f"resize_mode {resize_mode} is not supported")
396
-
397
- elif isinstance(image, torch.Tensor):
398
- image = torch.nn.functional.interpolate(
399
- image,
400
- size=(height, width),
401
- )
402
- elif isinstance(image, np.ndarray):
403
- image = self.numpy_to_pt(image)
404
- image = torch.nn.functional.interpolate(
405
- image,
406
- size=(height, width),
407
- )
408
- image = self.pt_to_numpy(image)
409
- return image
410
-
411
- def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
412
- """
413
- Create a mask.
414
-
415
- Args:
416
- image (`PIL.Image.Image`):
417
- The image input, should be a PIL image.
418
-
419
- Returns:
420
- `PIL.Image.Image`:
421
- The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1.
422
- """
423
- image[image < 0.5] = 0
424
- image[image >= 0.5] = 1
425
-
426
- return image
427
-
428
- def get_default_height_width(
429
- self,
430
- image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
431
- height: Optional[int] = None,
432
- width: Optional[int] = None,
433
- ) -> Tuple[int, int]:
434
- """
435
- This function return the height and width that are downscaled to the next integer multiple of
436
- `vae_scale_factor`.
437
-
438
- Args:
439
- image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
440
- The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have
441
- shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should
442
- have shape `[batch, channel, height, width]`.
443
- height (`int`, *optional*, defaults to `None`):
444
- The height in preprocessed image. If `None`, will use the height of `image` input.
445
- width (`int`, *optional*`, defaults to `None`):
446
- The width in preprocessed. If `None`, will use the width of the `image` input.
447
- """
448
-
449
- if height is None:
450
- if isinstance(image, PIL.Image.Image):
451
- height = image.height
452
- elif isinstance(image, torch.Tensor):
453
- height = image.shape[2]
454
- else:
455
- height = image.shape[1]
456
-
457
- if width is None:
458
- if isinstance(image, PIL.Image.Image):
459
- width = image.width
460
- elif isinstance(image, torch.Tensor):
461
- width = image.shape[3]
462
- else:
463
- width = image.shape[2]
464
-
465
- width, height = (
466
- x - x % self.config.vae_scale_factor for x in (width, height)
467
- ) # resize to integer multiple of vae_scale_factor
468
-
469
- return height, width
470
-
471
- def preprocess(
472
- self,
473
- image: PipelineImageInput,
474
- height: Optional[int] = None,
475
- width: Optional[int] = None,
476
- do_crop: bool = False,
477
- ) -> torch.Tensor:
478
- """
479
- Preprocess the image input.
480
-
481
- Args:
482
- image (`pipeline_image_input`):
483
- The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of
484
- supported formats.
485
- height (`int`, *optional*, defaults to `None`):
486
- The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default
487
- height.
488
- width (`int`, *optional*`, defaults to `None`):
489
- The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width.
490
- resize_mode (`str`, *optional*, defaults to `default`):
491
- The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within
492
- the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will
493
- resize the image to fit within the specified width and height, maintaining the aspect ratio, and then
494
- center the image within the dimensions, filling empty with data from image. If `crop`, will resize the
495
- image to fit within the specified width and height, maintaining the aspect ratio, and then center the
496
- image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
497
- supported for PIL image input.
498
- crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
499
- The crop coordinates for each image in the batch. If `None`, will not crop the image.
500
- """
501
- supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
502
-
503
- # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
504
- if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
505
- if isinstance(image, torch.Tensor):
506
- # if image is a pytorch tensor could have 2 possible shapes:
507
- # 1. batch x height x width: we should insert the channel dimension at position 1
508
- # 2. channel x height x width: we should insert batch dimension at position 0,
509
- # however, since both channel and batch dimension has same size 1, it is same to insert at position 1
510
- # for simplicity, we insert a dimension of size 1 at position 1 for both cases
511
- image = image.unsqueeze(1)
512
- else:
513
- # if it is a numpy array, it could have 2 possible shapes:
514
- # 1. batch x height x width: insert channel dimension on last position
515
- # 2. height x width x channel: insert batch dimension on first position
516
- if image.shape[-1] == 1:
517
- image = np.expand_dims(image, axis=0)
518
- else:
519
- image = np.expand_dims(image, axis=-1)
520
-
521
- if isinstance(image, list) and isinstance(image[0], np.ndarray) and image[0].ndim == 4:
522
- warnings.warn(
523
- "Passing `image` as a list of 4d np.ndarray is deprecated."
524
- "Please concatenate the list along the batch dimension and pass it as a single 4d np.ndarray",
525
- FutureWarning,
526
- )
527
- image = np.concatenate(image, axis=0)
528
- if isinstance(image, list) and isinstance(image[0], torch.Tensor) and image[0].ndim == 4:
529
- warnings.warn(
530
- "Passing `image` as a list of 4d torch.Tensor is deprecated."
531
- "Please concatenate the list along the batch dimension and pass it as a single 4d torch.Tensor",
532
- FutureWarning,
533
- )
534
- image = torch.cat(image, axis=0)
535
-
536
- if not is_valid_image_imagelist(image):
537
- raise ValueError(
538
- f"Input is in incorrect format. Currently, we only support {', '.join(str(x) for x in supported_formats)}"
539
- )
540
- if not isinstance(image, list):
541
- image = [image]
542
-
543
- if isinstance(image[0], PIL.Image.Image):
544
- pass
545
- elif isinstance(image[0], np.ndarray):
546
- image = self.numpy_to_pil(image)
547
- elif isinstance(image[0], torch.Tensor):
548
- image = self.pt_to_numpy(image)
549
- image = self.numpy_to_pil(image)
550
-
551
- if do_crop:
552
- transforms = T.Compose([
553
- T.Lambda(lambda image: image.convert('RGB')),
554
- T.ToTensor(),
555
- T.CenterCrop((height, width)),
556
- T.Normalize([.5], [.5]),
557
- ])
558
- else:
559
- transforms = T.Compose([
560
- T.Lambda(lambda image: image.convert('RGB')),
561
- T.ToTensor(),
562
- T.Resize((height, width)),
563
- T.Normalize([.5], [.5]),
564
- ])
565
- image = torch.stack([transforms(i) for i in image])
566
-
567
- # expected range [0,1], normalize to [-1,1]
568
- do_normalize = self.config.do_normalize
569
- if do_normalize and image.min() < 0:
570
- warnings.warn(
571
- "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
572
- f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
573
- FutureWarning,
574
- )
575
- do_normalize = False
576
- if do_normalize:
577
- image = self.normalize(image)
578
-
579
- if self.config.do_binarize:
580
- image = self.binarize(image)
581
-
582
- return image
583
-
584
- def postprocess(
585
- self,
586
- image: torch.Tensor,
587
- output_type: str = "pil",
588
- do_denormalize: Optional[List[bool]] = None,
589
- ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
590
- """
591
- Postprocess the image output from tensor to `output_type`.
592
-
593
- Args:
594
- image (`torch.Tensor`):
595
- The image input, should be a pytorch tensor with shape `B x C x H x W`.
596
- output_type (`str`, *optional*, defaults to `pil`):
597
- The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
598
- do_denormalize (`List[bool]`, *optional*, defaults to `None`):
599
- Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
600
- `VaeImageProcessor` config.
601
-
602
- Returns:
603
- `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
604
- The postprocessed image.
605
- """
606
- if not isinstance(image, torch.Tensor):
607
- raise ValueError(
608
- f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
609
- )
610
- if output_type not in ["latent", "pt", "np", "pil"]:
611
- deprecation_message = (
612
- f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
613
- "`pil`, `np`, `pt`, `latent`"
614
- )
615
- deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
616
- output_type = "np"
617
-
618
- if output_type == "latent":
619
- return image
620
-
621
- if do_denormalize is None:
622
- do_denormalize = [self.config.do_normalize] * image.shape[0]
623
-
624
- image = torch.stack(
625
- [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
626
- )
627
-
628
- if output_type == "pt":
629
- return image
630
-
631
- image = self.pt_to_numpy(image)
632
-
633
- if output_type == "np":
634
- return image
635
-
636
- if output_type == "pil":
637
- return self.numpy_to_pil(image)
638
-
639
- def apply_overlay(
640
- self,
641
- mask: PIL.Image.Image,
642
- init_image: PIL.Image.Image,
643
- image: PIL.Image.Image,
644
- crop_coords: Optional[Tuple[int, int, int, int]] = None,
645
- ) -> PIL.Image.Image:
646
- """
647
- overlay the inpaint output to the original image
648
- """
649
-
650
- width, height = image.width, image.height
651
-
652
- init_image = self.resize(init_image, width=width, height=height)
653
- mask = self.resize(mask, width=width, height=height)
654
-
655
- init_image_masked = PIL.Image.new("RGBa", (width, height))
656
- init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L")))
657
- init_image_masked = init_image_masked.convert("RGBA")
658
-
659
- if crop_coords is not None:
660
- x, y, x2, y2 = crop_coords
661
- w = x2 - x
662
- h = y2 - y
663
- base_image = PIL.Image.new("RGBA", (width, height))
664
- image = self.resize(image, height=h, width=w, resize_mode="crop")
665
- base_image.paste(image, (x, y))
666
- image = base_image.convert("RGB")
667
-
668
- image = image.convert("RGBA")
669
- image.alpha_composite(init_image_masked)
670
- image = image.convert("RGB")
671
-
672
- return image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
onediffusion/pipeline/onediffusion.py DELETED
@@ -1,1079 +0,0 @@
1
- from dataclasses import dataclass
2
- from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
3
- from diffusers.pipelines.pipeline_utils import DiffusionPipeline
4
- from diffusers.utils import (
5
- CONFIG_NAME,
6
- DEPRECATED_REVISION_ARGS,
7
- BaseOutput,
8
- PushToHubMixin,
9
- deprecate,
10
- is_accelerate_available,
11
- is_accelerate_version,
12
- is_torch_npu_available,
13
- is_torch_version,
14
- logging,
15
- numpy_to_pil,
16
- replace_example_docstring,
17
- )
18
- from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, ModelMixin
19
- from diffusers.utils.torch_utils import randn_tensor
20
- from diffusers.utils import BaseOutput
21
- # from diffusers.image_processor import VaeImageProcessor
22
- import einops
23
- import inspect
24
- import numpy as np
25
- import PIL
26
- import torch
27
- from transformers import T5EncoderModel, T5Tokenizer
28
- from typing import Any, Callable, Dict, List, Optional, Union
29
- from PIL import Image
30
-
31
- from ..nextdit.modeling_nextdit import NextDiT
32
- from ..dataset.utils import *
33
- # from ..dataset.multitask.multiview import calculate_rays
34
- from ..pipeline.image_processor import VaeImageProcessorOneDiffuser
35
-
36
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
37
-
38
- SUPPORTED_DEVICE_MAP = ["balanced"]
39
-
40
- EXAMPLE_DOC_STRING = """
41
- Examples:
42
- ```py
43
- >>> import torch
44
- >>> from one_diffusion import OneDiffusionPipeline
45
-
46
- >>> pipe = OneDiffusionPipeline.from_pretrained("path_to_one_diffuser_model")
47
- >>> pipe = pipe.to("cuda")
48
-
49
- >>> prompt = "A beautiful sunset over the ocean"
50
- >>> image = pipe(prompt).images[0]
51
- >>> image.save("beautiful_sunset.png")
52
- ```
53
- """
54
-
55
- def create_c2w_matrix(azimuth_deg, elevation_deg, distance=1.0, target=np.array([0, 0, 0])):
56
- """
57
- Create a Camera-to-World (C2W) matrix from azimuth and elevation angles.
58
-
59
- Parameters:
60
- - azimuth_deg: Azimuth angle in degrees.
61
- - elevation_deg: Elevation angle in degrees.
62
- - distance: Distance from the target point.
63
- - target: The point the camera is looking at in world coordinates.
64
-
65
- Returns:
66
- - C2W: A 4x4 NumPy array representing the Camera-to-World transformation matrix.
67
- """
68
- # Convert angles from degrees to radians
69
- azimuth = np.deg2rad(azimuth_deg)
70
- elevation = np.deg2rad(elevation_deg)
71
-
72
- # Spherical to Cartesian conversion for camera position
73
- x = distance * np.cos(elevation) * np.cos(azimuth)
74
- y = distance * np.cos(elevation) * np.sin(azimuth)
75
- z = distance * np.sin(elevation)
76
- camera_position = np.array([x, y, z])
77
-
78
- # Define the forward vector (from camera to target)
79
- target = 2*camera_position - target
80
- forward = target - camera_position
81
- forward /= np.linalg.norm(forward)
82
-
83
- # Define the world up vector
84
- world_up = np.array([0, 0, 1])
85
-
86
- # Compute the right vector
87
- right = np.cross(world_up, forward)
88
- if np.linalg.norm(right) < 1e-6:
89
- # Handle the singularity when forward is parallel to world_up
90
- world_up = np.array([0, 1, 0])
91
- right = np.cross(world_up, forward)
92
- right /= np.linalg.norm(right)
93
-
94
- # Recompute the orthogonal up vector
95
- up = np.cross(forward, right)
96
-
97
- # Construct the rotation matrix
98
- rotation = np.vstack([right, up, forward]).T # 3x3
99
-
100
- # Construct the full C2W matrix
101
- C2W = np.eye(4)
102
- C2W[:3, :3] = rotation
103
- C2W[:3, 3] = camera_position
104
-
105
- return C2W
106
-
107
- @dataclass
108
- class OneDiffusionPipelineOutput(BaseOutput):
109
- """
110
- Output class for Stable Diffusion pipelines.
111
-
112
- Args:
113
- images (`List[PIL.Image.Image]` or `np.ndarray`)
114
- List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
115
- num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
116
- """
117
-
118
- images: Union[List[Image.Image], np.ndarray]
119
- latents: Optional[torch.Tensor] = None
120
-
121
-
122
- def retrieve_latents(
123
- encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
124
- ):
125
- if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
126
- return encoder_output.latent_dist.sample(generator)
127
- elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
128
- return encoder_output.latent_dist.mode()
129
- elif hasattr(encoder_output, "latents"):
130
- return encoder_output.latents
131
- else:
132
- raise AttributeError("Could not access latents of provided encoder_output")
133
-
134
-
135
- def calculate_shift(
136
- image_seq_len,
137
- base_seq_len: int = 256,
138
- max_seq_len: int = 4096,
139
- base_shift: float = 0.5,
140
- max_shift: float = 1.16,
141
- # max_clip: float = 1.5,
142
- ):
143
- m = (max_shift - base_shift) / (max_seq_len - base_seq_len) # 0.000169270833
144
- b = base_shift - m * base_seq_len # 0.5-0.0433333332
145
- mu = image_seq_len * m + b
146
- # mu = min(mu, max_clip)
147
- return mu
148
-
149
-
150
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
151
- def retrieve_timesteps(
152
- scheduler,
153
- num_inference_steps: Optional[int] = None,
154
- device: Optional[Union[str, torch.device]] = None,
155
- timesteps: Optional[List[int]] = None,
156
- sigmas: Optional[List[float]] = None,
157
- **kwargs,
158
- ):
159
- """
160
- Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
161
- custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
162
-
163
- Args:
164
- scheduler (`SchedulerMixin`):
165
- The scheduler to get timesteps from.
166
- num_inference_steps (`int`):
167
- The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
168
- must be `None`.
169
- device (`str` or `torch.device`, *optional*):
170
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
171
- timesteps (`List[int]`, *optional*):
172
- Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
173
- `num_inference_steps` and `sigmas` must be `None`.
174
- sigmas (`List[float]`, *optional*):
175
- Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
176
- `num_inference_steps` and `timesteps` must be `None`.
177
-
178
- Returns:
179
- `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
180
- second element is the number of inference steps.
181
- """
182
- if timesteps is not None and sigmas is not None:
183
- raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
184
- if timesteps is not None:
185
- accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
186
- if not accepts_timesteps:
187
- raise ValueError(
188
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
189
- f" timestep schedules. Please check whether you are using the correct scheduler."
190
- )
191
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
192
- timesteps = scheduler.timesteps
193
- num_inference_steps = len(timesteps)
194
- elif sigmas is not None:
195
- accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
196
- if not accept_sigmas:
197
- raise ValueError(
198
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
199
- f" sigmas schedules. Please check whether you are using the correct scheduler."
200
- )
201
- scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
202
- timesteps = scheduler.timesteps
203
- num_inference_steps = len(timesteps)
204
- else:
205
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
206
- timesteps = scheduler.timesteps
207
- return timesteps, num_inference_steps
208
-
209
-
210
-
211
- class OneDiffusionPipeline(DiffusionPipeline):
212
- r"""
213
- Pipeline for text-to-image generation using OneDiffuser.
214
-
215
- This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
216
- library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
217
-
218
- Args:
219
- transformer ([`NextDiT`]):
220
- Conditional transformer (NextDiT) architecture to denoise the encoded image latents.
221
- vae ([`AutoencoderKL`]):
222
- Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
223
- text_encoder ([`T5EncoderModel`]):
224
- Frozen text-encoder. OneDiffuser uses the T5 model as text encoder.
225
- tokenizer (`T5Tokenizer`):
226
- Tokenizer of class T5Tokenizer.
227
- scheduler ([`FlowMatchEulerDiscreteScheduler`]):
228
- A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
229
- """
230
-
231
- def __init__(
232
- self,
233
- transformer: NextDiT,
234
- vae: AutoencoderKL,
235
- text_encoder: T5EncoderModel,
236
- tokenizer: T5Tokenizer,
237
- scheduler: FlowMatchEulerDiscreteScheduler,
238
- ):
239
- super().__init__()
240
- self.register_modules(
241
- transformer=transformer,
242
- vae=vae,
243
- text_encoder=text_encoder,
244
- tokenizer=tokenizer,
245
- scheduler=scheduler,
246
- )
247
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
248
- self.image_processor = VaeImageProcessorOneDiffuser(vae_scale_factor=self.vae_scale_factor)
249
-
250
- def enable_vae_slicing(self):
251
- self.vae.enable_slicing()
252
-
253
- def disable_vae_slicing(self):
254
- self.vae.disable_slicing()
255
-
256
- def enable_sequential_cpu_offload(self, gpu_id=0):
257
- if is_accelerate_available():
258
- from accelerate import cpu_offload
259
- else:
260
- raise ImportError("Please install accelerate via `pip install accelerate`")
261
-
262
- device = torch.device(f"cuda:{gpu_id}")
263
-
264
- for cpu_offloaded_model in [self.transformer, self.text_encoder, self.vae]:
265
- if cpu_offloaded_model is not None:
266
- cpu_offload(cpu_offloaded_model, device)
267
-
268
- @property
269
- def _execution_device(self):
270
- if self.device != torch.device("meta") or not hasattr(self.transformer, "_hf_hook"):
271
- return self.device
272
- for module in self.transformer.modules():
273
- if (
274
- hasattr(module, "_hf_hook")
275
- and hasattr(module._hf_hook, "execution_device")
276
- and module._hf_hook.execution_device is not None
277
- ):
278
- return torch.device(module._hf_hook.execution_device)
279
- return self.device
280
-
281
- def encode_prompt(
282
- self,
283
- prompt,
284
- device,
285
- num_images_per_prompt,
286
- do_classifier_free_guidance,
287
- negative_prompt=None,
288
- max_length=300,
289
- ):
290
- batch_size = len(prompt) if isinstance(prompt, list) else 1
291
-
292
- text_inputs = self.tokenizer(
293
- prompt,
294
- padding="max_length",
295
- max_length=max_length,
296
- truncation=True,
297
- add_special_tokens=True,
298
- return_tensors="pt",
299
- )
300
- text_input_ids = text_inputs.input_ids
301
- attention_mask = text_inputs.attention_mask
302
-
303
- untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
304
-
305
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
306
- removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
307
- logger.warning(
308
- "The following part of your input was truncated because CLIP can only handle sequences up to"
309
- f" {max_length} tokens: {removed_text}"
310
- )
311
-
312
- text_encoder_output = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask.to(device))
313
- prompt_embeds = text_encoder_output[0].to(torch.float32)
314
-
315
- # duplicate text embeddings for each generation per prompt, using mps friendly method
316
- bs_embed, seq_len, _ = prompt_embeds.shape
317
- prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
318
- prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
319
-
320
- # duplicate attention mask for each generation per prompt
321
- attention_mask = attention_mask.repeat(1, num_images_per_prompt)
322
- attention_mask = attention_mask.view(bs_embed * num_images_per_prompt, -1)
323
-
324
- # get unconditional embeddings for classifier free guidance
325
- if do_classifier_free_guidance:
326
- uncond_tokens: List[str]
327
- if negative_prompt is None:
328
- uncond_tokens = [""] * batch_size
329
- elif type(prompt) is not type(negative_prompt):
330
- raise TypeError(
331
- f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
332
- f" {type(prompt)}."
333
- )
334
- elif isinstance(negative_prompt, str):
335
- uncond_tokens = [negative_prompt]
336
- elif batch_size != len(negative_prompt):
337
- raise ValueError(
338
- f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
339
- f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
340
- " the batch size of `prompt`."
341
- )
342
- else:
343
- uncond_tokens = negative_prompt
344
-
345
- max_length = text_input_ids.shape[-1]
346
- uncond_input = self.tokenizer(
347
- uncond_tokens,
348
- padding="max_length",
349
- max_length=max_length,
350
- truncation=True,
351
- return_tensors="pt",
352
- )
353
-
354
- uncond_encoder_output = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device))
355
- negative_prompt_embeds = uncond_encoder_output[0].to(torch.float32)
356
-
357
- # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
358
- seq_len = negative_prompt_embeds.shape[1]
359
- negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
360
- negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
361
-
362
- # duplicate unconditional attention mask for each generation per prompt
363
- uncond_attention_mask = uncond_input.attention_mask.repeat(1, num_images_per_prompt)
364
- uncond_attention_mask = uncond_attention_mask.view(batch_size * num_images_per_prompt, -1)
365
-
366
- # For classifier free guidance, we need to do two forward passes.
367
- # Here we concatenate the unconditional and text embeddings into a single batch
368
- # to avoid doing two forward passes
369
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
370
- attention_mask = torch.cat([uncond_attention_mask, attention_mask])
371
-
372
- return prompt_embeds.to(device), attention_mask.to(device)
373
-
374
- def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
375
- shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
376
- if isinstance(generator, list) and len(generator) != batch_size:
377
- raise ValueError(
378
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
379
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
380
- )
381
-
382
- if latents is None:
383
- latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
384
- else:
385
- latents = latents.to(device)
386
-
387
- # scale the initial noise by the standard deviation required by the scheduler
388
- latents = latents * self.scheduler.init_noise_sigma
389
- return latents
390
-
391
- @torch.no_grad()
392
- @replace_example_docstring(EXAMPLE_DOC_STRING)
393
- def __call__(
394
- self,
395
- prompt: Union[str, List[str]] = None,
396
- height: Optional[int] = None,
397
- width: Optional[int] = None,
398
- num_inference_steps: int = 50,
399
- guidance_scale: float = 5.0,
400
- negative_prompt: Optional[Union[str, List[str]]] = None,
401
- num_images_per_prompt: Optional[int] = 1,
402
- eta: float = 0.0,
403
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
404
- latents: Optional[torch.FloatTensor] = None,
405
- output_type: Optional[str] = "pil",
406
- return_dict: bool = True,
407
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
408
- callback_steps: int = 1,
409
- forward_kwargs: Optional[Dict[str, Any]] = {},
410
- **kwargs,
411
- ):
412
- r"""
413
- Function invoked when calling the pipeline for generation.
414
-
415
- Args:
416
- prompt (`str` or `List[str]`, *optional*):
417
- The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
418
- height (`int`, *optional*, defaults to self.transformer.config.sample_size):
419
- The height in pixels of the generated image.
420
- width (`int`, *optional*, defaults to self.transformer.config.sample_size):
421
- The width in pixels of the generated image.
422
- num_inference_steps (`int`, *optional*, defaults to 50):
423
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
424
- expense of slower inference.
425
- guidance_scale (`float`, *optional*, defaults to 7.5):
426
- Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
427
- `guidance_scale` is defined as `w` of equation 2. of [Imagen
428
- Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
429
- 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
430
- usually at the expense of lower image quality.
431
- negative_prompt (`str` or `List[str]`, *optional*):
432
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
433
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
434
- less than `1`).
435
- num_images_per_prompt (`int`, *optional*, defaults to 1):
436
- The number of images to generate per prompt.
437
- eta (`float`, *optional*, defaults to 0.0):
438
- Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
439
- [`schedulers.DDIMScheduler`], will be ignored for others.
440
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
441
- One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
442
- to make generation deterministic.
443
- latents (`torch.FloatTensor`, *optional*):
444
- Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
445
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
446
- tensor will ge generated by sampling using the supplied random `generator`.
447
- output_type (`str`, *optional*, defaults to `"pil"`):
448
- The output format of the generate image. Choose between
449
- [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
450
- return_dict (`bool`, *optional*, defaults to `True`):
451
- Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
452
- plain tuple.
453
- callback (`Callable`, *optional*):
454
- A function that will be called every `callback_steps` steps during inference. The function will be
455
- called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
456
- callback_steps (`int`, *optional*, defaults to 1):
457
- The frequency at which the `callback` function will be called. If not specified, the callback will be
458
- called at every step.
459
-
460
- Examples:
461
-
462
- Returns:
463
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
464
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
465
- When returning a tuple, the first element is a list with the generated images, and the second element is a
466
- list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
467
- (nsfw) content, according to the `safety_checker`.
468
- """
469
- height = height or self.transformer.config.input_size[-2] * 8 # TODO: Hardcoded downscale factor of vae
470
- width = width or self.transformer.config.input_size[-1] * 8
471
-
472
- # check inputs. Raise error if not correct
473
- self.check_inputs(prompt, height, width, callback_steps)
474
-
475
- # define call parameters
476
- batch_size = 1 if isinstance(prompt, str) else len(prompt)
477
- device = self._execution_device
478
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
479
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf
480
- do_classifier_free_guidance = guidance_scale > 1.0
481
-
482
- encoder_hidden_states, encoder_attention_mask = self.encode_prompt(
483
- prompt,
484
- device,
485
- num_images_per_prompt,
486
- do_classifier_free_guidance,
487
- negative_prompt,
488
- )
489
-
490
- # set timesteps
491
- # # self.scheduler.set_timesteps(num_inference_steps, device=device)
492
- # timesteps = self.scheduler.timesteps
493
- timesteps = None
494
-
495
- # prepare latent variables
496
- num_channels_latents = self.transformer.config.in_channels
497
- latents = self.prepare_latents(
498
- batch_size * num_images_per_prompt,
499
- num_channels_latents,
500
- height,
501
- width,
502
- self.dtype,
503
- device,
504
- generator,
505
- latents,
506
- )
507
-
508
- # prepare extra step kwargs
509
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
510
-
511
- # 5. Prepare timesteps
512
- sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
513
- image_seq_len = latents.shape[-1] * latents.shape[-2] / self.transformer.config.patch_size[-1] / self.transformer.config.patch_size[-2]
514
- mu = calculate_shift(
515
- image_seq_len,
516
- self.scheduler.config.base_image_seq_len,
517
- self.scheduler.config.max_image_seq_len,
518
- self.scheduler.config.base_shift,
519
- self.scheduler.config.max_shift,
520
- )
521
- timesteps, num_inference_steps = retrieve_timesteps(
522
- self.scheduler,
523
- num_inference_steps,
524
- device,
525
- timesteps,
526
- sigmas,
527
- mu=mu,
528
- )
529
- num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
530
- self._num_timesteps = len(timesteps)
531
-
532
- # denoising loop
533
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
534
- with self.progress_bar(total=num_inference_steps) as progress_bar:
535
- for i, t in enumerate(timesteps):
536
- # expand the latents if we are doing classifier free guidance
537
- latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
538
- # latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
539
-
540
- # predict the noise residual
541
- noise_pred = self.transformer(
542
- samples=latent_model_input.to(self.dtype),
543
- timesteps=torch.tensor([t] * latent_model_input.shape[0], device=device),
544
- encoder_hidden_states=encoder_hidden_states.to(self.dtype),
545
- encoder_attention_mask=encoder_attention_mask,
546
- **forward_kwargs
547
- )
548
-
549
- # perform guidance
550
- if do_classifier_free_guidance:
551
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
552
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
553
-
554
- # compute the previous noisy sample x_t -> x_t-1
555
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
556
-
557
- # call the callback, if provided
558
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
559
- progress_bar.update()
560
- if callback is not None and i % callback_steps == 0:
561
- callback(i, t, latents)
562
-
563
- # scale and decode the image latents with vae
564
- latents = 1 / self.vae.config.scaling_factor * latents
565
- if latents.ndim == 5:
566
- latents = latents.squeeze(1)
567
- image = self.vae.decode(latents.to(self.vae.dtype)).sample
568
-
569
- image = (image / 2 + 0.5).clamp(0, 1)
570
- image = image.cpu().permute(0, 2, 3, 1).float().numpy()
571
-
572
- if output_type == "pil":
573
- image = self.numpy_to_pil(image)
574
-
575
- if not return_dict:
576
- return (image, None)
577
-
578
- return OneDiffusionPipelineOutput(images=image)
579
-
580
- @torch.no_grad()
581
- def img2img(
582
- self,
583
- prompt: Union[str, List[str]] = None,
584
- image: Union[PIL.Image.Image, List[PIL.Image.Image]] = None,
585
- height: Optional[int] = None,
586
- width: Optional[int] = None,
587
- num_inference_steps: int = 50,
588
- guidance_scale: float = 5.0,
589
- denoise_mask: Optional[List[int]] = [1, 0],
590
- negative_prompt: Optional[Union[str, List[str]]] = None,
591
- num_images_per_prompt: Optional[int] = 1,
592
- eta: float = 0.0,
593
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
594
- latents: Optional[torch.FloatTensor] = None,
595
- output_type: Optional[str] = "pil",
596
- return_dict: bool = True,
597
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
598
- callback_steps: int = 1,
599
- do_crop: bool = True,
600
- is_multiview: bool = False,
601
- multiview_azimuths: Optional[List[int]] = [0, 30, 60, 90],
602
- multiview_elevations: Optional[List[int]] = [0, 0, 0, 0],
603
- multiview_distances: float = 1.7,
604
- multiview_c2ws: Optional[List[torch.Tensor]] = None,
605
- multiview_intrinsics: Optional[torch.Tensor] = None,
606
- multiview_focal_length: float = 1.3887,
607
- forward_kwargs: Optional[Dict[str, Any]] = {},
608
- noise_scale: float = 1.0,
609
- **kwargs,
610
- ):
611
- # Convert single image to list for consistent handling
612
- if isinstance(image, PIL.Image.Image):
613
- image = [image]
614
-
615
- if height is None or width is None:
616
- closest_ar = get_closest_ratio(height=image[0].size[1], width=image[0].size[0], ratios=ASPECT_RATIO_512)
617
- height, width = int(closest_ar[0][0]), int(closest_ar[0][1])
618
-
619
- if not isinstance(multiview_distances, list) and not isinstance(multiview_distances, tuple):
620
- multiview_distances = [multiview_distances] * len(multiview_azimuths)
621
-
622
- # height = height or self.transformer.config.input_size[-2] * 8 # TODO: Hardcoded downscale factor of vae
623
- # width = width or self.transformer.config.input_size[-1] * 8
624
-
625
- # 1. check inputs. Raise error if not correct
626
- self.check_inputs(prompt, height, width, callback_steps)
627
-
628
- # Additional input validation for image list
629
- if not all(isinstance(img, PIL.Image.Image) for img in image):
630
- raise ValueError("All elements in image list must be PIL.Image objects")
631
-
632
- # 2. define call parameters
633
- batch_size = 1 if isinstance(prompt, str) else len(prompt)
634
- device = self._execution_device
635
- do_classifier_free_guidance = guidance_scale > 1.0
636
-
637
- # 3. Encode input prompt
638
- encoder_hidden_states, encoder_attention_mask = self.encode_prompt(
639
- prompt,
640
- device,
641
- num_images_per_prompt,
642
- do_classifier_free_guidance,
643
- negative_prompt,
644
- )
645
-
646
- # 4. Preprocess all images
647
- if image is not None and len(image) > 0:
648
- processed_image = self.image_processor.preprocess(image, height=height, width=width, do_crop=do_crop)
649
- else:
650
- processed_image = None
651
-
652
- # # Stack processed images along the sequence dimension
653
- # if len(processed_images) > 1:
654
- # processed_image = torch.cat(processed_images, dim=0)
655
- # else:
656
- # processed_image = processed_images[0]
657
-
658
- timesteps = None
659
-
660
- # 6. prepare latent variables
661
- num_channels_latents = self.transformer.config.in_channels
662
- if processed_image is not None:
663
- cond_latents = self.prepare_latents(
664
- batch_size * num_images_per_prompt,
665
- num_channels_latents,
666
- height,
667
- width,
668
- self.dtype,
669
- device,
670
- generator,
671
- latents,
672
- image=processed_image,
673
- )
674
- else:
675
- cond_latents = None
676
-
677
- # 7. prepare extra step kwargs
678
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
679
- denoise_mask = torch.tensor(denoise_mask, device=device)
680
- denoise_indices = torch.where(denoise_mask == 1)[0]
681
- cond_indices = torch.where(denoise_mask == 0)[0]
682
- seq_length = denoise_mask.shape[0]
683
-
684
- latents = self.prepare_init_latents(
685
- batch_size * num_images_per_prompt,
686
- seq_length,
687
- num_channels_latents,
688
- height,
689
- width,
690
- self.dtype,
691
- device,
692
- generator,
693
- )
694
-
695
- # 5. Prepare timesteps
696
- sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
697
- # image_seq_len = latents.shape[1] * latents.shape[-1] * latents.shape[-2] / self.transformer.config.patch_size[-1] / self.transformer.config.patch_size[-2]
698
- image_seq_len = noise_scale * sum(denoise_mask) * latents.shape[-1] * latents.shape[-2] / self.transformer.config.patch_size[-1] / self.transformer.config.patch_size[-2]
699
- # image_seq_len = 256
700
- mu = calculate_shift(
701
- image_seq_len,
702
- self.scheduler.config.base_image_seq_len,
703
- self.scheduler.config.max_image_seq_len,
704
- self.scheduler.config.base_shift,
705
- self.scheduler.config.max_shift,
706
- )
707
- timesteps, num_inference_steps = retrieve_timesteps(
708
- self.scheduler,
709
- num_inference_steps,
710
- device,
711
- timesteps,
712
- sigmas,
713
- mu=mu,
714
- )
715
- num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
716
- self._num_timesteps = len(timesteps)
717
-
718
- if is_multiview:
719
- raise Exception('Multiview is supported in this demo.')
720
- cond_indices_images = [index // 2 for index in cond_indices if index % 2 == 0]
721
- cond_indices_rays = [index // 2 for index in cond_indices if index % 2 == 1]
722
-
723
- multiview_elevations = [element for element in multiview_elevations if element is not None]
724
- multiview_azimuths = [element for element in multiview_azimuths if element is not None]
725
- multiview_distances = [element for element in multiview_distances if element is not None]
726
-
727
- if multiview_c2ws is None:
728
- multiview_c2ws = [
729
- torch.tensor(create_c2w_matrix(azimuth, elevation, distance)) for azimuth, elevation, distance in zip(multiview_azimuths, multiview_elevations, multiview_distances)
730
- ]
731
- c2ws = torch.stack(multiview_c2ws).float()
732
- else:
733
- c2ws = torch.Tensor(multiview_c2ws).float()
734
-
735
- c2ws[:, 0:3, 1:3] *= -1
736
- c2ws = c2ws[:, [1, 0, 2, 3], :]
737
- c2ws[:, 2, :] *= -1
738
-
739
- w2cs = torch.inverse(c2ws)
740
- if multiview_intrinsics is None:
741
- multiview_intrinsics = torch.Tensor([[[multiview_focal_length, 0, 0.5], [0, multiview_focal_length, 0.5], [0, 0, 1]]]).repeat(c2ws.shape[0], 1, 1)
742
- K = multiview_intrinsics
743
- Rs = w2cs[:, :3, :3]
744
- Ts = w2cs[:, :3, 3]
745
- sizes = torch.Tensor([[1, 1]]).repeat(c2ws.shape[0], 1)
746
-
747
- assert height == width
748
- cond_rays = calculate_rays(K, sizes, Rs, Ts, height // 8)
749
- cond_rays = cond_rays.reshape(-1, height // 8, width // 8, 6)
750
- # padding = (0, 10)
751
- # cond_rays = torch.nn.functional.pad(cond_rays, padding, "constant", 0)
752
- cond_rays = torch.cat([cond_rays, cond_rays, cond_rays[..., :4]], dim=-1) * 1.658
753
- cond_rays = cond_rays[None].repeat(batch_size * num_images_per_prompt, 1, 1, 1, 1)
754
- cond_rays = cond_rays.permute(0, 1, 4, 2, 3)
755
- cond_rays = cond_rays.to(device, dtype=self.dtype)
756
-
757
- latents = einops.rearrange(latents, "b (f n) c h w -> b f n c h w", n=2)
758
- if cond_latents is not None:
759
- latents[:, cond_indices_images, 0] = cond_latents
760
- latents[:, cond_indices_rays, 1] = cond_rays
761
- latents = einops.rearrange(latents, "b f n c h w -> b (f n) c h w")
762
- else:
763
- if cond_latents is not None:
764
- latents[:, cond_indices] = cond_latents
765
-
766
- # denoising loop
767
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
768
- with self.progress_bar(total=num_inference_steps) as progress_bar:
769
- for i, t in enumerate(timesteps):
770
- # expand the latents if we are doing classifier free guidance
771
- latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
772
- input_t = torch.broadcast_to(einops.repeat(torch.Tensor([t]).to(device), "1 -> 1 f 1 1 1", f=latent_model_input.shape[1]), latent_model_input.shape).clone()
773
-
774
- if is_multiview:
775
- input_t = einops.rearrange(input_t, "b (f n) c h w -> b f n c h w", n=2)
776
- input_t[:, cond_indices_images, 0] = self.scheduler.timesteps[-1]
777
- input_t[:, cond_indices_rays, 1] = self.scheduler.timesteps[-1]
778
- input_t = einops.rearrange(input_t, "b f n c h w -> b (f n) c h w")
779
- else:
780
- input_t[:, cond_indices] = self.scheduler.timesteps[-1]
781
-
782
- # predict the noise residual
783
- noise_pred = self.transformer(
784
- samples=latent_model_input.to(self.dtype),
785
- timesteps=input_t,
786
- encoder_hidden_states=encoder_hidden_states.to(self.dtype),
787
- encoder_attention_mask=encoder_attention_mask,
788
- **forward_kwargs
789
- )
790
-
791
- # perform guidance
792
- if do_classifier_free_guidance:
793
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
794
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
795
-
796
- # compute the previous noisy sample x_t -> x_t-1
797
- bs, n_frame = noise_pred.shape[:2]
798
- noise_pred = einops.rearrange(noise_pred, "b f c h w -> (b f) c h w")
799
- latents = einops.rearrange(latents, "b f c h w -> (b f) c h w")
800
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
801
- latents = einops.rearrange(latents, "(b f) c h w -> b f c h w", b=bs, f=n_frame)
802
- if is_multiview:
803
- latents = einops.rearrange(latents, "b (f n) c h w -> b f n c h w", n=2)
804
- if cond_latents is not None:
805
- latents[:, cond_indices_images, 0] = cond_latents
806
- latents[:, cond_indices_rays, 1] = cond_rays
807
- latents = einops.rearrange(latents, "b f n c h w -> b (f n) c h w")
808
- else:
809
- if cond_latents is not None:
810
- latents[:, cond_indices] = cond_latents
811
-
812
- # call the callback, if provided
813
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
814
- progress_bar.update()
815
- if callback is not None and i % callback_steps == 0:
816
- callback(i, t, latents)
817
-
818
- decoded_latents = latents / 1.658
819
- # scale and decode the image latents with vae
820
- latents = 1 / self.vae.config.scaling_factor * latents
821
- if latents.ndim == 5:
822
- latents = latents[:, denoise_indices]
823
- latents = einops.rearrange(latents, "b f c h w -> (b f) c h w")
824
- image = self.vae.decode(latents.to(self.vae.dtype)).sample
825
-
826
- image = (image / 2 + 0.5).clamp(0, 1)
827
- image = image.cpu().permute(0, 2, 3, 1).float().numpy()
828
-
829
- if output_type == "pil":
830
- image = self.numpy_to_pil(image)
831
-
832
- if not return_dict:
833
- return (image, None)
834
-
835
- return OneDiffusionPipelineOutput(images=image, latents=decoded_latents)
836
-
837
- def prepare_extra_step_kwargs(self, generator, eta):
838
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
839
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
840
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
841
- # and should be between [0, 1]
842
-
843
- accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
844
- extra_step_kwargs = {}
845
- if accepts_eta:
846
- extra_step_kwargs["eta"] = eta
847
-
848
- # check if the scheduler accepts generator
849
- accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
850
- if accepts_generator:
851
- extra_step_kwargs["generator"] = generator
852
- return extra_step_kwargs
853
-
854
- def check_inputs(self, prompt, height, width, callback_steps):
855
- if not isinstance(prompt, str) and not isinstance(prompt, list):
856
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
857
-
858
- if height % 16 != 0 or width % 16 != 0:
859
- raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
860
-
861
- if (callback_steps is None) or (
862
- callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
863
- ):
864
- raise ValueError(
865
- f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
866
- f" {type(callback_steps)}."
867
- )
868
-
869
- def get_timesteps(self, num_inference_steps, strength, device):
870
- # get the original timestep using init_timestep
871
- init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
872
-
873
- t_start = max(num_inference_steps - init_timestep, 0)
874
- timesteps = self.scheduler.timesteps[t_start:]
875
-
876
- return timesteps, num_inference_steps - t_start
877
-
878
- def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, image=None):
879
- shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
880
- if isinstance(generator, list) and len(generator) != batch_size:
881
- raise ValueError(
882
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
883
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
884
- )
885
-
886
- if latents is None:
887
- latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
888
- else:
889
- latents = latents.to(device)
890
-
891
- if image is None:
892
- # scale the initial noise by the standard deviation required by the scheduler
893
- # latents = latents * self.scheduler.init_noise_sigma
894
- return latents
895
-
896
- image = image.to(device=device, dtype=dtype)
897
-
898
- if isinstance(generator, list) and len(generator) != batch_size:
899
- raise ValueError(
900
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
901
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
902
- )
903
- elif isinstance(generator, list):
904
- if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
905
- image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
906
- elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
907
- raise ValueError(
908
- f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
909
- )
910
- init_latents = [
911
- retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
912
- for i in range(batch_size)
913
- ]
914
- init_latents = torch.cat(init_latents, dim=0)
915
- else:
916
- init_latents = retrieve_latents(self.vae.encode(image.to(self.vae.dtype)), generator=generator)
917
-
918
- init_latents = self.vae.config.scaling_factor * init_latents
919
- init_latents = init_latents.to(device=device, dtype=dtype)
920
-
921
- init_latents = einops.rearrange(init_latents, "(bs views) c h w -> bs views c h w", bs=batch_size, views=init_latents.shape[0]//batch_size)
922
- # latents = einops.rearrange(latents, "b c h w -> b 1 c h w")
923
- # latents = torch.concat([latents, init_latents], dim=1)
924
- return init_latents
925
-
926
- def prepare_init_latents(self, batch_size, seq_length, num_channels_latents, height, width, dtype, device, generator, latents=None):
927
- shape = (batch_size, seq_length, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
928
- if isinstance(generator, list) and len(generator) != batch_size:
929
- raise ValueError(
930
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
931
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
932
- )
933
-
934
- if latents is None:
935
- latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
936
- else:
937
- latents = latents.to(device)
938
-
939
- return latents
940
-
941
- @torch.no_grad()
942
- def generate(
943
- self,
944
- prompt: Union[str, List[str]],
945
- num_inference_steps: int = 50,
946
- guidance_scale: float = 5.0,
947
- negative_prompt: Optional[Union[str, List[str]]] = None,
948
- num_images_per_prompt: Optional[int] = 1,
949
- height: Optional[int] = None,
950
- width: Optional[int] = None,
951
- eta: float = 0.0,
952
- generator: Optional[torch.Generator] = None,
953
- latents: Optional[torch.FloatTensor] = None,
954
- output_type: Optional[str] = "pil",
955
- return_dict: bool = True,
956
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
957
- callback_steps: Optional[int] = 1,
958
- ):
959
- """
960
- Function for image generation using the OneDiffusionPipeline.
961
- """
962
- return self(
963
- prompt=prompt,
964
- num_inference_steps=num_inference_steps,
965
- guidance_scale=guidance_scale,
966
- negative_prompt=negative_prompt,
967
- num_images_per_prompt=num_images_per_prompt,
968
- height=height,
969
- width=width,
970
- eta=eta,
971
- generator=generator,
972
- latents=latents,
973
- output_type=output_type,
974
- return_dict=return_dict,
975
- callback=callback,
976
- callback_steps=callback_steps,
977
- )
978
-
979
- @staticmethod
980
- def numpy_to_pil(images):
981
- """
982
- Convert a numpy image or a batch of images to a PIL image.
983
- """
984
- if images.ndim == 3:
985
- images = images[None, ...]
986
- images = (images * 255).round().astype("uint8")
987
- if images.shape[-1] == 1:
988
- # special case for grayscale (single channel) images
989
- pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
990
- else:
991
- pil_images = [Image.fromarray(image) for image in images]
992
-
993
- return pil_images
994
-
995
- @classmethod
996
- def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
997
- model_path = pretrained_model_name_or_path
998
- cache_dir = kwargs.pop("cache_dir", None)
999
- force_download = kwargs.pop("force_download", False)
1000
- proxies = kwargs.pop("proxies", None)
1001
- local_files_only = kwargs.pop("local_files_only", None)
1002
- token = kwargs.pop("token", None)
1003
- revision = kwargs.pop("revision", None)
1004
- from_flax = kwargs.pop("from_flax", False)
1005
- torch_dtype = kwargs.pop("torch_dtype", None)
1006
- custom_pipeline = kwargs.pop("custom_pipeline", None)
1007
- custom_revision = kwargs.pop("custom_revision", None)
1008
- provider = kwargs.pop("provider", None)
1009
- sess_options = kwargs.pop("sess_options", None)
1010
- device_map = kwargs.pop("device_map", None)
1011
- max_memory = kwargs.pop("max_memory", None)
1012
- offload_folder = kwargs.pop("offload_folder", None)
1013
- offload_state_dict = kwargs.pop("offload_state_dict", False)
1014
- low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
1015
- variant = kwargs.pop("variant", None)
1016
- use_safetensors = kwargs.pop("use_safetensors", None)
1017
- use_onnx = kwargs.pop("use_onnx", None)
1018
- load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1019
-
1020
- if low_cpu_mem_usage and not is_accelerate_available():
1021
- low_cpu_mem_usage = False
1022
- logger.warning(
1023
- "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
1024
- " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
1025
- " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
1026
- " install accelerate\n```\n."
1027
- )
1028
-
1029
- if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
1030
- raise NotImplementedError(
1031
- "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
1032
- " `low_cpu_mem_usage=False`."
1033
- )
1034
-
1035
- if device_map is not None and not is_torch_version(">=", "1.9.0"):
1036
- raise NotImplementedError(
1037
- "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
1038
- " `device_map=None`."
1039
- )
1040
-
1041
- if device_map is not None and not is_accelerate_available():
1042
- raise NotImplementedError(
1043
- "Using `device_map` requires the `accelerate` library. Please install it using: `pip install accelerate`."
1044
- )
1045
-
1046
- if device_map is not None and not isinstance(device_map, str):
1047
- raise ValueError("`device_map` must be a string.")
1048
-
1049
- if device_map is not None and device_map not in SUPPORTED_DEVICE_MAP:
1050
- raise NotImplementedError(
1051
- f"{device_map} not supported. Supported strategies are: {', '.join(SUPPORTED_DEVICE_MAP)}"
1052
- )
1053
-
1054
- if device_map is not None and device_map in SUPPORTED_DEVICE_MAP:
1055
- if is_accelerate_version("<", "0.28.0"):
1056
- raise NotImplementedError("Device placement requires `accelerate` version `0.28.0` or later.")
1057
-
1058
- if low_cpu_mem_usage is False and device_map is not None:
1059
- raise ValueError(
1060
- f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
1061
- " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
1062
- )
1063
-
1064
- transformer = NextDiT.from_pretrained(f"{model_path}", subfolder="transformer", torch_dtype=torch.float32, cache_dir=cache_dir)
1065
- vae = AutoencoderKL.from_pretrained(f"{model_path}", subfolder="vae", cache_dir=cache_dir)
1066
- text_encoder = T5EncoderModel.from_pretrained(f"{model_path}", subfolder="text_encoder", torch_dtype=torch.float16, cache_dir=cache_dir)
1067
- tokenizer = T5Tokenizer.from_pretrained(model_path, subfolder="tokenizer", cache_dir=cache_dir)
1068
- scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_path, subfolder="scheduler", cache_dir=cache_dir)
1069
-
1070
- pipeline = cls(
1071
- transformer=transformer,
1072
- vae=vae,
1073
- text_encoder=text_encoder,
1074
- tokenizer=tokenizer,
1075
- scheduler=scheduler,
1076
- **kwargs
1077
- )
1078
-
1079
- return pipeline