Upload 27 files
Browse files- images/bear_avocado__spatext.jpg +0 -0
- images/bedroom__sketch.jpg +0 -0
- images/cat__mesh.jpg +0 -0
- images/cat__point_cloud.jpg +0 -0
- images/dog__sketch.jpg +0 -0
- images/fruit_bowl.jpg +0 -0
- images/grapes.jpg +0 -0
- images/horse.jpg +0 -0
- images/horse__point_cloud.jpg +0 -0
- images/knight__humanoid.jpg +0 -0
- images/library__mesh.jpg +0 -0
- images/living_room__seg.jpg +0 -0
- images/living_room_modern.jpg +0 -0
- images/man_park.jpg +0 -0
- images/person__mesh.jpg +0 -0
- images/running__pose.jpg +0 -0
- images/squirrel.jpg +0 -0
- images/tiger.jpg +0 -0
- images/van_gogh.jpg +0 -0
- pipelines/__init__.py +0 -0
- pipelines/pipeline_sdxl.py +570 -0
- run_ctrlx.py +218 -0
- utils/__init__.py +3 -0
- utils/feature.py +73 -0
- utils/media.py +21 -0
- utils/sdxl.py +302 -0
- utils/utils.py +101 -0
images/bear_avocado__spatext.jpg
ADDED
images/bedroom__sketch.jpg
ADDED
images/cat__mesh.jpg
ADDED
images/cat__point_cloud.jpg
ADDED
images/dog__sketch.jpg
ADDED
images/fruit_bowl.jpg
ADDED
images/grapes.jpg
ADDED
images/horse.jpg
ADDED
images/horse__point_cloud.jpg
ADDED
images/knight__humanoid.jpg
ADDED
images/library__mesh.jpg
ADDED
images/living_room__seg.jpg
ADDED
images/living_room_modern.jpg
ADDED
images/man_park.jpg
ADDED
images/person__mesh.jpg
ADDED
images/running__pose.jpg
ADDED
images/squirrel.jpg
ADDED
images/tiger.jpg
ADDED
images/van_gogh.jpg
ADDED
pipelines/__init__.py
ADDED
File without changes
|
pipelines/pipeline_sdxl.py
ADDED
@@ -0,0 +1,570 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import deepcopy
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from diffusers import StableDiffusionXLPipeline
|
4 |
+
from diffusers.image_processor import PipelineImageInput
|
5 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img\
|
6 |
+
import rescale_noise_cfg, retrieve_latents, retrieve_timesteps
|
7 |
+
from diffusers.utils import BaseOutput
|
8 |
+
from diffusers.utils.torch_utils import randn_tensor
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
import torch
|
12 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
13 |
+
from utils.utils import batch_dict_to_tensor, batch_tensor_to_dict, noise_prev, noise_t2t
|
14 |
+
from utils.sdxl import register_attr
|
15 |
+
|
16 |
+
###
|
17 |
+
# Code from genforce/ctrl-x/ctrl_x/pipelines/pipeline_sdxl.py
|
18 |
+
|
19 |
+
BATCH_ORDER = [
|
20 |
+
"structure_uncond", "appearance_uncond", "uncond", "structure_cond", "appearance_cond", "cond",
|
21 |
+
]
|
22 |
+
|
23 |
+
def get_last_control_i(control_schedule, num_inference_steps):
|
24 |
+
if control_schedule is None:
|
25 |
+
return num_inference_steps, num_inference_steps
|
26 |
+
|
27 |
+
def max_(l):
|
28 |
+
if len(l) == 0:
|
29 |
+
return 0.0
|
30 |
+
return max(l)
|
31 |
+
|
32 |
+
structure_max = 0.0
|
33 |
+
appearance_max = 0.0
|
34 |
+
for block in control_schedule.values():
|
35 |
+
if isinstance(block, list): # Handling mid_block
|
36 |
+
block = {0: block}
|
37 |
+
for layer in block.values():
|
38 |
+
structure_max = max(structure_max, max_(layer[0] + layer[1]))
|
39 |
+
appearance_max = max(appearance_max, max_(layer[2]))
|
40 |
+
|
41 |
+
structure_i = round(num_inference_steps * structure_max)
|
42 |
+
appearance_i = round(num_inference_steps * appearance_max)
|
43 |
+
|
44 |
+
return structure_i, appearance_i
|
45 |
+
|
46 |
+
@dataclass
|
47 |
+
class CtrlXStableDiffusionXLPipelineOutput(BaseOutput):
|
48 |
+
images: Union[List[Image.Image], np.ndarray]
|
49 |
+
structures = Union[List[Image.Image], np.ndarray]
|
50 |
+
appearances = Union[List[Image.Image], np.ndarray]
|
51 |
+
|
52 |
+
class CtrlXStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
53 |
+
def __call__(
|
54 |
+
self,
|
55 |
+
prompt: Union[str, List[str]] = None, # TODO: Support prompt_2 and negative_prompt_2
|
56 |
+
structure_prompt: Optional[Union[str, List[str]]] = None,
|
57 |
+
appearance_prompt: Optional[Union[str, List[str]]] = None,
|
58 |
+
structure_image: Optional[PipelineImageInput] = None,
|
59 |
+
appearance_image: Optional[PipelineImageInput] = None,
|
60 |
+
num_inference_steps: int = 50,
|
61 |
+
timesteps: List[int] = None,
|
62 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
63 |
+
positive_prompt: Optional[Union[str, List[str]]] = None,
|
64 |
+
height: Optional[int] = None,
|
65 |
+
width: Optional[int] = None,
|
66 |
+
guidance_scale: float = 5.0,
|
67 |
+
structure_guidance_scale: Optional[float] = None,
|
68 |
+
appearance_guidance_scale: Optional[float] = None,
|
69 |
+
num_images_per_prompt: Optional[int] = 1,
|
70 |
+
eta: float = 0.0,
|
71 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
72 |
+
latents: Optional[torch.Tensor] = None,
|
73 |
+
structure_latents: Optional[torch.Tensor] = None,
|
74 |
+
appearance_latents: Optional[torch.Tensor] = None,
|
75 |
+
prompt_embeds: Optional[torch.Tensor] = None, # Positive prompt is concatenated with prompt, so no embeddings
|
76 |
+
structure_prompt_embeds: Optional[torch.Tensor] = None,
|
77 |
+
appearance_prompt_embeds: Optional[torch.Tensor] = None,
|
78 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
79 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
80 |
+
structure_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
81 |
+
appearance_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
82 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
83 |
+
control_schedule: Optional[Dict] = None,
|
84 |
+
self_recurrence_schedule: Optional[List[int]] = [], # Format: [(start, end, num_repeat)]
|
85 |
+
decode_structure: Optional[bool] = True,
|
86 |
+
decode_appearance: Optional[bool] = True,
|
87 |
+
output_type: Optional[str] = "pil",
|
88 |
+
return_dict: bool = True,
|
89 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
90 |
+
guidance_rescale: float = 0.0,
|
91 |
+
original_size: Tuple[int, int] = None,
|
92 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
93 |
+
target_size: Tuple[int, int] = None,
|
94 |
+
clip_skip: Optional[int] = None,
|
95 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
96 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
97 |
+
**kwargs,
|
98 |
+
):
|
99 |
+
callback = kwargs.pop("callback", None)
|
100 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
101 |
+
self._guidance_scale = guidance_scale
|
102 |
+
|
103 |
+
# 0. Default height and width to U-Net
|
104 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
105 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
106 |
+
original_size = original_size or (height, width)
|
107 |
+
target_size = target_size or (height, width)
|
108 |
+
|
109 |
+
# 2. Set batch_size = 1 as per instruction
|
110 |
+
batch_size = 1
|
111 |
+
if isinstance(prompt, list):
|
112 |
+
assert len(prompt) == batch_size
|
113 |
+
if prompt_embeds is not None:
|
114 |
+
assert prompt_embeds.shape[0] == batch_size
|
115 |
+
|
116 |
+
device = self._execution_device
|
117 |
+
|
118 |
+
# 3. Encode input prompt
|
119 |
+
text_encoder_lora_scale = (
|
120 |
+
cross_attention_kwargs.get("scale", None)
|
121 |
+
if cross_attention_kwargs is not None else None
|
122 |
+
)
|
123 |
+
|
124 |
+
# 3-3.2 Encode input, structure, appearance prompt
|
125 |
+
# bc98db93-468b-4511-b30d-3a330eca9968
|
126 |
+
# Prepare prompt data
|
127 |
+
prompts = [
|
128 |
+
(prompt, None, None, None, None, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds),
|
129 |
+
(structure_prompt, structure_prompt_embeds, negative_prompt if structure_image is None else "", None, None, structure_prompt_embeds, None, structure_pooled_prompt_embeds, None),
|
130 |
+
(appearance_prompt, appearance_prompt_embeds, negative_prompt if appearance_image is None else "", None, None, appearance_prompt_embeds, None, appearance_pooled_prompt_embeds, None)
|
131 |
+
]
|
132 |
+
prompt_embeds_list = []
|
133 |
+
add_text_embeds_list = []
|
134 |
+
for item in prompts:
|
135 |
+
prompt_text, prompt_embeds_temp, negative_prompt_temp, pooled_prompt_embeds_temp = item[:4] # Unpack relevant items
|
136 |
+
|
137 |
+
if prompt_text is not None and prompt_text != "":
|
138 |
+
(
|
139 |
+
prompt_embeds_,
|
140 |
+
negative_prompt_embeds,
|
141 |
+
pooled_prompt_embeds_,
|
142 |
+
negative_pooled_prompt_embeds,
|
143 |
+
) = self.encode_prompt(
|
144 |
+
prompt=prompt_text,
|
145 |
+
prompt_2=None,
|
146 |
+
device=device,
|
147 |
+
num_images_per_prompt=num_images_per_prompt,
|
148 |
+
do_classifier_free_guidance=True,
|
149 |
+
negative_prompt=negative_prompt_temp,
|
150 |
+
negative_prompt_2=None,
|
151 |
+
prompt_embeds=prompt_embeds_temp,
|
152 |
+
negative_prompt_embeds=None,
|
153 |
+
pooled_prompt_embeds=pooled_prompt_embeds_temp,
|
154 |
+
negative_pooled_prompt_embeds=None,
|
155 |
+
lora_scale=text_encoder_lora_scale,
|
156 |
+
clip_skip=clip_skip,
|
157 |
+
)
|
158 |
+
prompt_embeds_list.append(torch.cat([negative_prompt_embeds, prompt_embeds_], dim=0).to(device))
|
159 |
+
add_text_embeds_list.append(torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds_], dim=0).to(device))
|
160 |
+
else:
|
161 |
+
prompt_embeds_list.append(prompt_embeds_list[0])
|
162 |
+
add_text_embeds_list.append(add_text_embeds_list[0])
|
163 |
+
# prompt_embeds, structure_prompt_embeds, appearance_prompt_embeds = prompt_embeds_list
|
164 |
+
# add_text_embeds, structure_add_text_embeds, appearance_add_text_embeds = add_text_embeds_list
|
165 |
+
|
166 |
+
# 3.3. Prepare added time ids & embeddings
|
167 |
+
if self.text_encoder_2 is None:
|
168 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
169 |
+
else:
|
170 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
171 |
+
|
172 |
+
add_time_ids = self._get_add_time_ids(
|
173 |
+
original_size,
|
174 |
+
crops_coords_top_left,
|
175 |
+
target_size,
|
176 |
+
dtype=self.dtype,
|
177 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
178 |
+
)
|
179 |
+
negative_add_time_ids = add_time_ids
|
180 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0).to(device)
|
181 |
+
|
182 |
+
# 4. Prepare timesteps
|
183 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
184 |
+
|
185 |
+
# 5. Prepare latent variables
|
186 |
+
num_channels_latents = self.unet.config.in_channels
|
187 |
+
|
188 |
+
# The second variable is _.
|
189 |
+
latents, _ = self.prepare_latents(
|
190 |
+
None, batch_size, num_images_per_prompt, num_channels_latents, height, width,
|
191 |
+
self.dtype, device, generator, latents
|
192 |
+
)
|
193 |
+
latents_ = [structure_latents, appearance_latents]
|
194 |
+
clean_latents_ = []
|
195 |
+
for image_index, image_ in enumerate([structure_image, appearance_image]):
|
196 |
+
if image_ is not None:
|
197 |
+
# The first variable is _.
|
198 |
+
_, clean_latent = self.prepare_latents(
|
199 |
+
image_, batch_size, num_images_per_prompt, num_channels_latents, height, width,
|
200 |
+
self.dtype, device, generator, latents_[image_index]
|
201 |
+
)
|
202 |
+
clean_latents_.append(clean_latent)
|
203 |
+
else:
|
204 |
+
clean_latents_.append(None)
|
205 |
+
if latents_[image_index] is None:
|
206 |
+
latents_[image_index] = latents
|
207 |
+
latents_ = [latents] + latents_
|
208 |
+
# clean_structure_latents, clean_appearance_latents = clean_latents_
|
209 |
+
|
210 |
+
# 6. Prepare extra step kwargs
|
211 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
212 |
+
|
213 |
+
# 7. Denoising loop
|
214 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
215 |
+
|
216 |
+
# 7.1 Apply denoising_end
|
217 |
+
if hasattr(self, 'denoising_end') and self.denoising_end is not None and 0.0 < float(self.denoising_end) < 1.0:
|
218 |
+
discrete_timestep_cutoff = int(
|
219 |
+
round(
|
220 |
+
self.scheduler.config.num_train_timesteps
|
221 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
222 |
+
)
|
223 |
+
)
|
224 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
225 |
+
timesteps = timesteps[:num_inference_steps]
|
226 |
+
|
227 |
+
# 7.2 Optionally get guidance scale embedding
|
228 |
+
timestep_cond = None
|
229 |
+
assert self.unet.config.time_cond_proj_dim is None
|
230 |
+
|
231 |
+
# 7.3 Get batch order
|
232 |
+
batch_order = deepcopy(BATCH_ORDER)
|
233 |
+
if structure_image is not None: # If image is provided, not generating, so no CFG needed
|
234 |
+
batch_order.remove("structure_uncond")
|
235 |
+
if appearance_image is not None:
|
236 |
+
batch_order.remove("appearance_uncond")
|
237 |
+
|
238 |
+
baked_latents = self.cfg_loop(batch_order,
|
239 |
+
prompt_embeds_list,
|
240 |
+
add_text_embeds_list,
|
241 |
+
add_time_ids,
|
242 |
+
latents_,
|
243 |
+
clean_latents_,
|
244 |
+
num_inference_steps,
|
245 |
+
num_warmup_steps,
|
246 |
+
extra_step_kwargs,
|
247 |
+
timesteps,
|
248 |
+
timestep_cond=timestep_cond,
|
249 |
+
control_schedule=control_schedule,
|
250 |
+
self_recurrence_schedule=self_recurrence_schedule,
|
251 |
+
guidance_rescale=guidance_rescale,
|
252 |
+
callback=callback,
|
253 |
+
callback_steps=callback_steps,
|
254 |
+
cross_attention_kwargs=cross_attention_kwargs)
|
255 |
+
latents, structure_latents, appearance_latents = baked_latents
|
256 |
+
|
257 |
+
# For passing important information onto the refiner
|
258 |
+
self.refiner_args = {"latents": latents.detach(), "prompt": prompt, "negative_prompt": negative_prompt}
|
259 |
+
|
260 |
+
if not output_type == "latent":
|
261 |
+
# Make sure the VAE is in float32 mode, as it overflows in float16
|
262 |
+
if self.vae.config.force_upcast:
|
263 |
+
self.upcast_vae()
|
264 |
+
vae_dtype = next(iter(self.vae.post_quant_conv.parameters())).dtype
|
265 |
+
latents = latents.to(vae_dtype)
|
266 |
+
structure_latents = structure_latents.to(vae_dtype)
|
267 |
+
appearance_latents = appearance_latents.to(vae_dtype)
|
268 |
+
|
269 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
270 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
271 |
+
if decode_structure:
|
272 |
+
structure = self.vae.decode(structure_latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
273 |
+
structure = self.image_processor.postprocess(structure, output_type=output_type)
|
274 |
+
else:
|
275 |
+
structure = structure_latents
|
276 |
+
if decode_appearance:
|
277 |
+
appearance = self.vae.decode(appearance_latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
278 |
+
appearance = self.image_processor.postprocess(appearance, output_type=output_type)
|
279 |
+
else:
|
280 |
+
appearance = appearance_latents
|
281 |
+
|
282 |
+
# Cast back to fp16 if needed
|
283 |
+
if self.vae.config.force_upcast:
|
284 |
+
self.vae.to(dtype=torch.float16)
|
285 |
+
else:
|
286 |
+
return CtrlXStableDiffusionXLPipelineOutput(
|
287 |
+
images=latents, structures=structure_latents, appearances=appearance_latents
|
288 |
+
)
|
289 |
+
|
290 |
+
# Offload all models
|
291 |
+
self.maybe_free_model_hooks()
|
292 |
+
|
293 |
+
if not return_dict:
|
294 |
+
return image, structure, appearance
|
295 |
+
|
296 |
+
return CtrlXStableDiffusionXLPipelineOutput(images=image, structures=structure, appearances=appearance)
|
297 |
+
|
298 |
+
def cfg_loop(self,
|
299 |
+
batch_order,
|
300 |
+
prompt_embeds_list,
|
301 |
+
add_text_embeds_list,
|
302 |
+
add_time_ids,
|
303 |
+
latents_,
|
304 |
+
clean_latents_,
|
305 |
+
num_inference_steps,
|
306 |
+
num_warmup_steps,
|
307 |
+
extra_step_kwargs,
|
308 |
+
timesteps,
|
309 |
+
timestep_cond=None,
|
310 |
+
control_schedule=None,
|
311 |
+
self_recurrence_schedule=None,
|
312 |
+
guidance_rescale=0.0,
|
313 |
+
callback=None,
|
314 |
+
callback_steps=None,
|
315 |
+
callback_on_step_end=None,
|
316 |
+
callback_on_step_end_tensor_inputs=None,
|
317 |
+
cross_attention_kwargs=None):
|
318 |
+
prompt_embeds, structure_prompt_embeds, appearance_prompt_embeds = prompt_embeds_list
|
319 |
+
add_text_embeds, structure_add_text_embeds, appearance_add_text_embeds = add_text_embeds_list
|
320 |
+
latents, structure_latents, appearance_latents = latents_
|
321 |
+
clean_structure_latents, clean_appearance_latents = clean_latents_
|
322 |
+
structure_control_stop_i, appearance_control_stop_i = get_last_control_i(control_schedule, num_inference_steps)
|
323 |
+
|
324 |
+
if self_recurrence_schedule is None:
|
325 |
+
self_recurrence_schedule = [0] * num_inference_steps
|
326 |
+
|
327 |
+
self._num_timesteps = len(timesteps)
|
328 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
329 |
+
for i, t in enumerate(timesteps):
|
330 |
+
if hasattr(self, 'interrupt') and self.interrupt:
|
331 |
+
continue
|
332 |
+
|
333 |
+
if i == structure_control_stop_i: # If not generating structure/appearance, drop after last control
|
334 |
+
if "structure_uncond" not in batch_order:
|
335 |
+
batch_order.remove("structure_cond")
|
336 |
+
if i == appearance_control_stop_i:
|
337 |
+
if "appearance_uncond" not in batch_order:
|
338 |
+
batch_order.remove("appearance_cond")
|
339 |
+
|
340 |
+
register_attr(self, t=t.item(), do_control=True, batch_order=batch_order)
|
341 |
+
|
342 |
+
# With CFG.
|
343 |
+
latent_model_input = self.scheduler.scale_model_input(latents, t)
|
344 |
+
structure_latent_model_input = self.scheduler.scale_model_input(structure_latents, t)
|
345 |
+
appearance_latent_model_input = self.scheduler.scale_model_input(appearance_latents, t)
|
346 |
+
|
347 |
+
pass
|
348 |
+
all_latent_model_input = {
|
349 |
+
"structure_uncond": structure_latent_model_input[0:1],
|
350 |
+
"appearance_uncond": appearance_latent_model_input[0:1],
|
351 |
+
"uncond": latent_model_input[0:1],
|
352 |
+
"structure_cond": structure_latent_model_input[0:1],
|
353 |
+
"appearance_cond": appearance_latent_model_input[0:1],
|
354 |
+
"cond": latent_model_input[0:1],
|
355 |
+
}
|
356 |
+
all_prompt_embeds = {
|
357 |
+
"structure_uncond": structure_prompt_embeds[0:1],
|
358 |
+
"appearance_uncond": appearance_prompt_embeds[0:1],
|
359 |
+
"uncond": prompt_embeds[0:1],
|
360 |
+
"structure_cond": structure_prompt_embeds[1:2],
|
361 |
+
"appearance_cond": appearance_prompt_embeds[1:2],
|
362 |
+
"cond": prompt_embeds[1:2],
|
363 |
+
}
|
364 |
+
all_add_text_embeds = {
|
365 |
+
"structure_uncond": structure_add_text_embeds[0:1],
|
366 |
+
"appearance_uncond": appearance_add_text_embeds[0:1],
|
367 |
+
"uncond": add_text_embeds[0:1],
|
368 |
+
"structure_cond": structure_add_text_embeds[1:2],
|
369 |
+
"appearance_cond": appearance_add_text_embeds[1:2],
|
370 |
+
"cond": add_text_embeds[1:2],
|
371 |
+
}
|
372 |
+
all_time_ids = {
|
373 |
+
"structure_uncond": add_time_ids[0:1],
|
374 |
+
"appearance_uncond": add_time_ids[0:1],
|
375 |
+
"uncond": add_time_ids[0:1],
|
376 |
+
"structure_cond": add_time_ids[1:2],
|
377 |
+
"appearance_cond": add_time_ids[1:2],
|
378 |
+
"cond": add_time_ids[1:2],
|
379 |
+
}
|
380 |
+
|
381 |
+
concat_latent_model_input = batch_dict_to_tensor(all_latent_model_input, batch_order)
|
382 |
+
concat_prompt_embeds = batch_dict_to_tensor(all_prompt_embeds, batch_order)
|
383 |
+
concat_add_text_embeds = batch_dict_to_tensor(all_add_text_embeds, batch_order)
|
384 |
+
concat_add_time_ids = batch_dict_to_tensor(all_time_ids, batch_order)
|
385 |
+
|
386 |
+
# Predict the noise residual
|
387 |
+
added_cond_kwargs = {"text_embeds": concat_add_text_embeds, "time_ids": concat_add_time_ids}
|
388 |
+
|
389 |
+
concat_noise_pred = self.unet(
|
390 |
+
concat_latent_model_input,
|
391 |
+
t,
|
392 |
+
encoder_hidden_states=concat_prompt_embeds,
|
393 |
+
timestep_cond=timestep_cond,
|
394 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
395 |
+
added_cond_kwargs=added_cond_kwargs,
|
396 |
+
).sample
|
397 |
+
all_noise_pred = batch_tensor_to_dict(concat_noise_pred, batch_order)
|
398 |
+
|
399 |
+
# Classifier-free guidance
|
400 |
+
noise_pred = all_noise_pred["uncond"] +\
|
401 |
+
self.guidance_scale * (all_noise_pred["cond"] - all_noise_pred["uncond"])
|
402 |
+
|
403 |
+
structure_noise_pred = all_noise_pred["structure_cond"]\
|
404 |
+
if "structure_cond" in batch_order else noise_pred
|
405 |
+
if "structure_uncond" in all_noise_pred:
|
406 |
+
structure_noise_pred = all_noise_pred["structure_uncond"] +\
|
407 |
+
self.structure_guidance_scale * (structure_noise_pred - all_noise_pred["structure_uncond"])
|
408 |
+
|
409 |
+
appearance_noise_pred = all_noise_pred["appearance_cond"]\
|
410 |
+
if "appearance_cond" in batch_order else noise_pred
|
411 |
+
if "appearance_uncond" in all_noise_pred:
|
412 |
+
appearance_noise_pred = all_noise_pred["appearance_uncond"] +\
|
413 |
+
self.appearance_guidance_scale * (appearance_noise_pred - all_noise_pred["appearance_uncond"])
|
414 |
+
|
415 |
+
if guidance_rescale > 0.0:
|
416 |
+
noise_pred = rescale_noise_cfg(
|
417 |
+
noise_pred, all_noise_pred["cond"], guidance_rescale=guidance_rescale
|
418 |
+
)
|
419 |
+
if "structure_uncond" in all_noise_pred:
|
420 |
+
structure_noise_pred = rescale_noise_cfg(
|
421 |
+
structure_noise_pred, all_noise_pred["structure_cond"],
|
422 |
+
guidance_rescale=guidance_rescale
|
423 |
+
)
|
424 |
+
if "appearance_uncond" in all_noise_pred:
|
425 |
+
appearance_noise_pred = rescale_noise_cfg(
|
426 |
+
appearance_noise_pred, all_noise_pred["appearance_cond"],
|
427 |
+
guidance_rescale=guidance_rescale
|
428 |
+
)
|
429 |
+
|
430 |
+
# Compute the previous noisy sample x_t -> x_t-1
|
431 |
+
concat_noise_pred = torch.cat(
|
432 |
+
[structure_noise_pred, appearance_noise_pred, noise_pred], dim=0,
|
433 |
+
)
|
434 |
+
concat_latents = torch.cat(
|
435 |
+
[structure_latents, appearance_latents, latents], dim=0,
|
436 |
+
)
|
437 |
+
structure_latents, appearance_latents, latents = self.scheduler.step(
|
438 |
+
concat_noise_pred, t, concat_latents, **extra_step_kwargs,
|
439 |
+
).prev_sample.chunk(3)
|
440 |
+
|
441 |
+
if clean_structure_latents is not None:
|
442 |
+
structure_latents = noise_prev(self.scheduler, t, clean_structure_latents)
|
443 |
+
if clean_appearance_latents is not None:
|
444 |
+
appearance_latents = noise_prev(self.scheduler, t, clean_appearance_latents)
|
445 |
+
|
446 |
+
# Self-recurrence
|
447 |
+
for _ in range(self_recurrence_schedule[i]):
|
448 |
+
if hasattr(self.scheduler, "_step_index"): # For fancier schedulers
|
449 |
+
self.scheduler._step_index -= 1 # TODO: Does this actually work?
|
450 |
+
|
451 |
+
t_prev = 0 if i + 1 >= num_inference_steps else timesteps[i + 1]
|
452 |
+
latents = noise_t2t(self.scheduler, t_prev, t, latents)
|
453 |
+
latent_model_input = torch.cat([latents] * 2)
|
454 |
+
|
455 |
+
register_attr(self, t=t.item(), do_control=False, batch_order=["uncond", "cond"])
|
456 |
+
|
457 |
+
# Predict the noise residual
|
458 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
459 |
+
noise_pred_uncond, noise_pred_ = self.unet(
|
460 |
+
latent_model_input,
|
461 |
+
t,
|
462 |
+
encoder_hidden_states=prompt_embeds,
|
463 |
+
timestep_cond=timestep_cond,
|
464 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
465 |
+
added_cond_kwargs=added_cond_kwargs,
|
466 |
+
).sample.chunk(2)
|
467 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_ - noise_pred_uncond)
|
468 |
+
|
469 |
+
if guidance_rescale > 0.0:
|
470 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_, guidance_rescale=guidance_rescale)
|
471 |
+
|
472 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
473 |
+
|
474 |
+
# Callbacks
|
475 |
+
assert callback_on_step_end is None
|
476 |
+
|
477 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
478 |
+
progress_bar.update()
|
479 |
+
if callback is not None and i % callback_steps == 0:
|
480 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
481 |
+
callback(step_idx, t, latents)
|
482 |
+
|
483 |
+
# "Reconstruction"
|
484 |
+
if clean_structure_latents is not None:
|
485 |
+
structure_latents = clean_structure_latents
|
486 |
+
if clean_appearance_latents is not None:
|
487 |
+
appearance_latents = clean_appearance_latents
|
488 |
+
|
489 |
+
return latents, structure_latents, appearance_latents
|
490 |
+
|
491 |
+
@property
|
492 |
+
def appearance_guidance_scale(self):
|
493 |
+
return self._guidance_scale if self._appearance_guidance_scale is None else self._appearance_guidance_scale
|
494 |
+
|
495 |
+
@property
|
496 |
+
def structure_guidance_scale(self):
|
497 |
+
return self._guidance_scale if self._structure_guidance_scale is None else self._structure_guidance_scale
|
498 |
+
|
499 |
+
def prepare_latents(self, image, batch_size, num_images_per_prompt, num_channels_latents, height, width,
|
500 |
+
dtype, device, generator=None, noise=None):
|
501 |
+
batch_size = batch_size * num_images_per_prompt
|
502 |
+
|
503 |
+
if noise is None:
|
504 |
+
shape = (
|
505 |
+
batch_size,
|
506 |
+
num_channels_latents,
|
507 |
+
height // self.vae_scale_factor,
|
508 |
+
width // self.vae_scale_factor
|
509 |
+
)
|
510 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
511 |
+
noise = noise * self.scheduler.init_noise_sigma # Starting noise, need to scale
|
512 |
+
else:
|
513 |
+
noise = noise.to(device)
|
514 |
+
|
515 |
+
if image is None:
|
516 |
+
return noise, None
|
517 |
+
|
518 |
+
if not isinstance(image, (torch.Tensor, Image.Image, list)):
|
519 |
+
raise ValueError(
|
520 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
521 |
+
)
|
522 |
+
|
523 |
+
# Offload text encoder if `enable_model_cpu_offload` was enabled
|
524 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
525 |
+
self.text_encoder_2.to("cpu")
|
526 |
+
torch.cuda.empty_cache()
|
527 |
+
|
528 |
+
image = image.to(device=device, dtype=dtype)
|
529 |
+
|
530 |
+
if image.shape[1] == 4: # Image already in latents form
|
531 |
+
init_latents = image
|
532 |
+
|
533 |
+
else:
|
534 |
+
# Make sure the VAE is in float32 mode, as it overflows in float16
|
535 |
+
if self.vae.config.force_upcast:
|
536 |
+
image = image.to(torch.float32)
|
537 |
+
self.vae.to(torch.float32)
|
538 |
+
|
539 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
540 |
+
raise ValueError(
|
541 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
542 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
543 |
+
)
|
544 |
+
elif isinstance(generator, list):
|
545 |
+
init_latents = [
|
546 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
547 |
+
for i in range(batch_size)
|
548 |
+
]
|
549 |
+
init_latents = torch.cat(init_latents, dim=0)
|
550 |
+
else:
|
551 |
+
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
552 |
+
|
553 |
+
if self.vae.config.force_upcast:
|
554 |
+
self.vae.to(dtype)
|
555 |
+
|
556 |
+
init_latents = init_latents.to(dtype)
|
557 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
558 |
+
|
559 |
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
560 |
+
# Expand init_latents for batch_size
|
561 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
562 |
+
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
563 |
+
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
564 |
+
raise ValueError(
|
565 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
566 |
+
)
|
567 |
+
else:
|
568 |
+
init_latents = torch.cat([init_latents], dim=0)
|
569 |
+
|
570 |
+
return noise, init_latents
|
run_ctrlx.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import ArgumentParser
|
2 |
+
from datetime import datetime
|
3 |
+
from diffusers import DDIMScheduler, StableDiffusionXLImg2ImgPipeline
|
4 |
+
from diffusers.utils import load_image
|
5 |
+
from os import makedirs, path
|
6 |
+
from pipelines.pipeline_sdxl import CtrlXStableDiffusionXLPipeline
|
7 |
+
import torch
|
8 |
+
from time import time
|
9 |
+
from utils import *
|
10 |
+
from utils.media import preprocess
|
11 |
+
from utils.sdxl import *
|
12 |
+
import yaml
|
13 |
+
|
14 |
+
|
15 |
+
@torch.no_grad()
|
16 |
+
def inference(
|
17 |
+
pipe, refiner, device,
|
18 |
+
structure_image, appearance_image,
|
19 |
+
prompt, structure_prompt, appearance_prompt,
|
20 |
+
positive_prompt, negative_prompt,
|
21 |
+
guidance_scale, structure_guidance_scale, appearance_guidance_scale,
|
22 |
+
num_inference_steps, eta, seed,
|
23 |
+
width, height,
|
24 |
+
structure_schedule, appearance_schedule,
|
25 |
+
):
|
26 |
+
seed_everything(seed)
|
27 |
+
|
28 |
+
# Process images.
|
29 |
+
# Moved from CtrlXStableDiffusionXLPipeline.__call__.
|
30 |
+
if structure_image is not None and isinstance(args.structure_image, str):
|
31 |
+
structure_image = load_image(args.structure_image)
|
32 |
+
structure_image = preprocess(structure_image, pipe.image_processor,
|
33 |
+
height=height, width=width, resize_mode="crop")
|
34 |
+
if appearance_image is not None:
|
35 |
+
appearance_image = load_image(appearance_image)
|
36 |
+
appearance_image = preprocess(appearance_image, pipe.image_processor,
|
37 |
+
height=height, width=width, resize_mode="crop")
|
38 |
+
|
39 |
+
|
40 |
+
# Scheduler.
|
41 |
+
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
|
42 |
+
timesteps = pipe.scheduler.timesteps
|
43 |
+
control_config = get_control_config(structure_schedule, appearance_schedule)
|
44 |
+
print(f"\nUsing the following control config:\n{control_config}\n")
|
45 |
+
config = yaml.safe_load(control_config)
|
46 |
+
register_control(
|
47 |
+
model=pipe,
|
48 |
+
timesteps=timesteps,
|
49 |
+
control_schedule=config["control_schedule"],
|
50 |
+
control_target=config["control_target"],
|
51 |
+
)
|
52 |
+
|
53 |
+
# Pipe settings.
|
54 |
+
pipe.safety_checker = None
|
55 |
+
pipe.requires_safety_checker = False
|
56 |
+
self_recurrence_schedule = get_self_recurrence_schedule(config["self_recurrence_schedule"], num_inference_steps)
|
57 |
+
pipe.set_progress_bar_config(desc="Ctrl-X inference")
|
58 |
+
|
59 |
+
# Inference.
|
60 |
+
result, structure, appearance = pipe(
|
61 |
+
prompt=prompt,
|
62 |
+
structure_prompt=structure_prompt,
|
63 |
+
appearance_prompt=appearance_prompt,
|
64 |
+
structure_image=structure_image,
|
65 |
+
appearance_image=appearance_image,
|
66 |
+
num_inference_steps=num_inference_steps,
|
67 |
+
negative_prompt=negative_prompt,
|
68 |
+
positive_prompt=positive_prompt,
|
69 |
+
height=height,
|
70 |
+
width=width,
|
71 |
+
guidance_scale=guidance_scale,
|
72 |
+
structure_guidance_scale=structure_guidance_scale,
|
73 |
+
appearance_guidance_scale=appearance_guidance_scale,
|
74 |
+
eta=eta,
|
75 |
+
output_type="pil",
|
76 |
+
return_dict=False,
|
77 |
+
control_schedule=config["control_schedule"],
|
78 |
+
self_recurrence_schedule=self_recurrence_schedule,
|
79 |
+
)
|
80 |
+
result_refiner = [None]
|
81 |
+
|
82 |
+
del pipe.refiner_args
|
83 |
+
|
84 |
+
return result[0], result_refiner[0], structure[0], appearance[0]
|
85 |
+
|
86 |
+
|
87 |
+
@torch.no_grad()
|
88 |
+
def main(args):
|
89 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
90 |
+
|
91 |
+
model_id_or_path = "/mnt/newhome/SSD-1B"
|
92 |
+
# refiner_id_or_path = "stabilityai/stable-diffusion-xl-refiner-1.0"
|
93 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
94 |
+
variant = "fp16" if device == "cuda" else "fp32"
|
95 |
+
|
96 |
+
scheduler = DDIMScheduler.from_config(model_id_or_path, subfolder="scheduler")
|
97 |
+
|
98 |
+
if args.model is None:
|
99 |
+
pipe = CtrlXStableDiffusionXLPipeline.from_pretrained(
|
100 |
+
model_id_or_path, scheduler=scheduler, torch_dtype=torch_dtype, variant=variant, use_safetensors=True,
|
101 |
+
)
|
102 |
+
else:
|
103 |
+
print(f"Using weights {args.model} for SDXL base model.")
|
104 |
+
pipe = CtrlXStableDiffusionXLPipeline.from_single_file(args.model, scheduler=scheduler, torch_dtype=torch_dtype)
|
105 |
+
|
106 |
+
if args.model_offload or args.sequential_offload:
|
107 |
+
try:
|
108 |
+
import accelerate # Checking if accelerate is installed for Model/CPU offloading
|
109 |
+
except:
|
110 |
+
raise ModuleNotFoundError("`accelerate` must be installed for Model/CPU offloading.")
|
111 |
+
|
112 |
+
if args.sequential_offload:
|
113 |
+
pipe.enable_sequential_cpu_offload()
|
114 |
+
elif args.model_offload:
|
115 |
+
pipe.enable_model_cpu_offload()
|
116 |
+
else:
|
117 |
+
pipe = pipe.to(device)
|
118 |
+
|
119 |
+
model_load_print = "Base model "
|
120 |
+
if not args.disable_refiner:
|
121 |
+
model_load_print += "+ refiner "
|
122 |
+
if args.sequential_offload:
|
123 |
+
model_load_print += "loaded with sequential CPU offloading."
|
124 |
+
elif args.model_offload:
|
125 |
+
model_load_print += "loaded with model CPU offloading."
|
126 |
+
else:
|
127 |
+
model_load_print += "loaded."
|
128 |
+
print(f"{model_load_print} Running on device: {device}.")
|
129 |
+
|
130 |
+
t = time()
|
131 |
+
|
132 |
+
result, result_refiner, structure, appearance = inference(
|
133 |
+
pipe=pipe,
|
134 |
+
refiner=None,
|
135 |
+
device=device,
|
136 |
+
structure_image=args.structure_image,
|
137 |
+
appearance_image=args.appearance_image,
|
138 |
+
prompt=args.prompt,
|
139 |
+
structure_prompt=args.structure_prompt,
|
140 |
+
appearance_prompt=args.appearance_prompt,
|
141 |
+
positive_prompt=args.positive_prompt,
|
142 |
+
negative_prompt=args.negative_prompt,
|
143 |
+
guidance_scale=args.guidance_scale,
|
144 |
+
structure_guidance_scale=args.structure_guidance_scale,
|
145 |
+
appearance_guidance_scale=args.appearance_guidance_scale,
|
146 |
+
num_inference_steps=args.num_inference_steps,
|
147 |
+
eta=args.eta,
|
148 |
+
seed=args.seed,
|
149 |
+
width=args.width,
|
150 |
+
height=args.height,
|
151 |
+
structure_schedule=args.structure_schedule,
|
152 |
+
appearance_schedule=args.appearance_schedule,
|
153 |
+
)
|
154 |
+
|
155 |
+
makedirs(args.output_folder, exist_ok=True)
|
156 |
+
prefix = "ctrlx__" + datetime.now().strftime("%Y%m%d_%H%M%S")
|
157 |
+
structure.save(path.join(args.output_folder, f"{prefix}__structure.jpg"), quality=JPEG_QUALITY)
|
158 |
+
appearance.save(path.join(args.output_folder, f"{prefix}__appearance.jpg"), quality=JPEG_QUALITY)
|
159 |
+
result.save(path.join(args.output_folder, f"{prefix}__result.jpg"), quality=JPEG_QUALITY)
|
160 |
+
if result_refiner is not None:
|
161 |
+
result_refiner.save(path.join(args.output_folder, f"{prefix}__result_refiner.jpg"), quality=JPEG_QUALITY)
|
162 |
+
|
163 |
+
if args.benchmark:
|
164 |
+
inference_time = time() - t
|
165 |
+
peak_memory_usage = torch.cuda.max_memory_reserved()
|
166 |
+
print(f"Inference time: {inference_time:.2f}s")
|
167 |
+
print(f"Peak memory usage: {peak_memory_usage / pow(1024, 3):.2f}GiB")
|
168 |
+
|
169 |
+
print("Done.")
|
170 |
+
|
171 |
+
|
172 |
+
if __name__ == "__main__":
|
173 |
+
parser = ArgumentParser()
|
174 |
+
|
175 |
+
parser.add_argument("--structure_image", "-si", type=str, default=None)
|
176 |
+
parser.add_argument("--appearance_image", "-ai", type=str, default=None)
|
177 |
+
|
178 |
+
parser.add_argument("--prompt", "-p", type=str, required=True)
|
179 |
+
parser.add_argument("--structure_prompt", "-sp", type=str, default="")
|
180 |
+
parser.add_argument("--appearance_prompt", "-ap", type=str, default="")
|
181 |
+
|
182 |
+
parser.add_argument("--positive_prompt", "-pp", type=str, default="high quality")
|
183 |
+
parser.add_argument("--negative_prompt", "-np", type=str, default="ugly, blurry, dark, low res, unrealistic")
|
184 |
+
|
185 |
+
parser.add_argument("--guidance_scale", "-g", type=float, default=5.0)
|
186 |
+
parser.add_argument("--structure_guidance_scale", "-sg", type=float, default=5.0)
|
187 |
+
parser.add_argument("--appearance_guidance_scale", "-ag", type=float, default=5.0)
|
188 |
+
|
189 |
+
parser.add_argument("--num_inference_steps", "-n", type=int, default=50)
|
190 |
+
parser.add_argument("--eta", "-e", type=float, default=1.0)
|
191 |
+
parser.add_argument("--seed", "-s", type=int, default=90095)
|
192 |
+
|
193 |
+
parser.add_argument("--width", "-W", type=int, default=1024)
|
194 |
+
parser.add_argument("--height", "-H", type=int, default=1024)
|
195 |
+
|
196 |
+
parser.add_argument("--structure_schedule", "-ss", type=float, default=0.6)
|
197 |
+
parser.add_argument("--appearance_schedule", "-as", type=float, default=0.6)
|
198 |
+
|
199 |
+
parser.add_argument("--output_folder", "-o", type=str, default="./results")
|
200 |
+
|
201 |
+
parser.add_argument(
|
202 |
+
"-mo", "--model_offload", action="store_true",
|
203 |
+
help="Model CPU offload, lowers memory usage with slight runtime increase. `accelerate` must be installed.",
|
204 |
+
)
|
205 |
+
parser.add_argument(
|
206 |
+
"-so", "--sequential_offload", action="store_true",
|
207 |
+
help=(
|
208 |
+
"Sequential layer CPU offload, significantly lowers memory usage with massive runtime increase."
|
209 |
+
"`accelerate` must be installed. If both model_offload and sequential_offload are set, then use the latter."
|
210 |
+
),
|
211 |
+
)
|
212 |
+
parser.add_argument("-r", "--disable_refiner", action="store_true")
|
213 |
+
parser.add_argument("-m", "--model", type=str, default=None, help="Optionally, load model safetensors.")
|
214 |
+
parser.add_argument("-b", "--benchmark", action="store_true", help="Show inference time and max memory usage.")
|
215 |
+
|
216 |
+
args = parser.parse_args()
|
217 |
+
main(args)
|
218 |
+
|
utils/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .feature import *
|
2 |
+
from .media import *
|
3 |
+
from .utils import *
|
utils/feature.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from .utils import *
|
6 |
+
|
7 |
+
|
8 |
+
def get_schedule(timesteps, schedule):
|
9 |
+
end = round(len(timesteps) * schedule)
|
10 |
+
timesteps = timesteps[:end]
|
11 |
+
return timesteps
|
12 |
+
|
13 |
+
|
14 |
+
def get_elem(l, i, default=0.0):
|
15 |
+
if i >= len(l):
|
16 |
+
return default
|
17 |
+
return l[i]
|
18 |
+
|
19 |
+
|
20 |
+
def pad_list(l_1, l_2, pad=0.0):
|
21 |
+
max_len = max(len(l_1), len(l_2))
|
22 |
+
l_1 = l_1 + [pad] * (max_len - len(l_1))
|
23 |
+
l_2 = l_2 + [pad] * (max_len - len(l_2))
|
24 |
+
return l_1, l_2
|
25 |
+
|
26 |
+
|
27 |
+
def normalize(x, dim):
|
28 |
+
x_mean = x.mean(dim=dim, keepdim=True)
|
29 |
+
x_std = x.std(dim=dim, keepdim=True)
|
30 |
+
x_normalized = (x - x_mean) / x_std
|
31 |
+
return x_normalized
|
32 |
+
|
33 |
+
|
34 |
+
# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
|
35 |
+
def appearance_mean_std(q_c_normed, k_s_normed, v_s): # c: content, s: style
|
36 |
+
q_c = q_c_normed # q_c and k_s must be projected from normalized features
|
37 |
+
k_s = k_s_normed
|
38 |
+
mean = F.scaled_dot_product_attention(q_c, k_s, v_s) # Use scaled_dot_product_attention for efficiency
|
39 |
+
std = (F.scaled_dot_product_attention(q_c, k_s, v_s.square()) - mean.square()).relu().sqrt()
|
40 |
+
|
41 |
+
return mean, std
|
42 |
+
|
43 |
+
|
44 |
+
def feature_injection(features, batch_order):
|
45 |
+
assert features.shape[0] % len(batch_order) == 0
|
46 |
+
features_dict = batch_tensor_to_dict(features, batch_order)
|
47 |
+
features_dict["cond"] = features_dict["structure_cond"]
|
48 |
+
features = batch_dict_to_tensor(features_dict, batch_order)
|
49 |
+
return features
|
50 |
+
|
51 |
+
|
52 |
+
def appearance_transfer(features, q_normed, k_normed, batch_order, v=None, reshape_fn=None):
|
53 |
+
assert features.shape[0] % len(batch_order) == 0
|
54 |
+
|
55 |
+
features_dict = batch_tensor_to_dict(features, batch_order)
|
56 |
+
q_normed_dict = batch_tensor_to_dict(q_normed, batch_order)
|
57 |
+
k_normed_dict = batch_tensor_to_dict(k_normed, batch_order)
|
58 |
+
v_dict = features_dict
|
59 |
+
if v is not None:
|
60 |
+
v_dict = batch_tensor_to_dict(v, batch_order)
|
61 |
+
|
62 |
+
mean_cond, std_cond = appearance_mean_std(
|
63 |
+
q_normed_dict["cond"], k_normed_dict["appearance_cond"], v_dict["appearance_cond"],
|
64 |
+
)
|
65 |
+
|
66 |
+
if reshape_fn is not None:
|
67 |
+
mean_cond = reshape_fn(mean_cond)
|
68 |
+
std_cond = reshape_fn(std_cond)
|
69 |
+
|
70 |
+
features_dict["cond"] = std_cond * normalize(features_dict["cond"], dim=-2) + mean_cond
|
71 |
+
|
72 |
+
features = batch_dict_to_tensor(features_dict, batch_order)
|
73 |
+
return features
|
utils/media.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms.functional as vF
|
4 |
+
import PIL
|
5 |
+
|
6 |
+
|
7 |
+
JPEG_QUALITY = 95
|
8 |
+
|
9 |
+
|
10 |
+
def preprocess(image, processor, **kwargs):
|
11 |
+
if isinstance(image, PIL.Image.Image):
|
12 |
+
pass
|
13 |
+
elif isinstance(image, np.ndarray):
|
14 |
+
image = PIL.Image.fromarray(image)
|
15 |
+
elif isinstance(image, torch.Tensor):
|
16 |
+
image = vF.to_pil_image(image)
|
17 |
+
else:
|
18 |
+
raise TypeError(f"Image must be of type PIL.Image, np.ndarray, or torch.Tensor, got {type(image)} instead.")
|
19 |
+
|
20 |
+
image = processor.preprocess(image, **kwargs)
|
21 |
+
return image
|
utils/sdxl.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from types import MethodType
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
from diffusers.models.attention_processor import Attention
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from .feature import *
|
9 |
+
from .utils import *
|
10 |
+
|
11 |
+
|
12 |
+
def get_control_config(structure_schedule, appearance_schedule):
|
13 |
+
s = structure_schedule
|
14 |
+
a = appearance_schedule
|
15 |
+
|
16 |
+
control_config =\
|
17 |
+
f"""control_schedule:
|
18 |
+
# structure_conv structure_attn appearance_attn conv/attn
|
19 |
+
encoder: # (num layers)
|
20 |
+
0: [[ ], [ ], [ ]] # 2/0
|
21 |
+
1: [[ ], [ ], [{a}, {a} ]] # 2/2
|
22 |
+
2: [[ ], [ ], [{a}, {a} ]] # 2/2
|
23 |
+
middle: [[ ], [ ], [ ]] # 2/1
|
24 |
+
decoder:
|
25 |
+
0: [[{s} ], [{s}, {s}, {s}], [0.0, {a}, {a}]] # 3/3
|
26 |
+
1: [[ ], [ ], [{a}, {a} ]] # 3/3
|
27 |
+
2: [[ ], [ ], [ ]] # 3/0
|
28 |
+
|
29 |
+
control_target:
|
30 |
+
- [output_tensor] # structure_conv choices: {{hidden_states, output_tensor}}
|
31 |
+
- [query, key] # structure_attn choices: {{query, key, value}}
|
32 |
+
- [before] # appearance_attn choices: {{before, value, after}}
|
33 |
+
|
34 |
+
self_recurrence_schedule:
|
35 |
+
- [0.1, 0.5, 2] # format: [start, end, num_recurrence]"""
|
36 |
+
|
37 |
+
return control_config
|
38 |
+
|
39 |
+
|
40 |
+
def convolution_forward( # From <class 'diffusers.models.resnet.ResnetBlock2D'>, forward (diffusers==0.28.0)
|
41 |
+
self,
|
42 |
+
input_tensor: torch.Tensor,
|
43 |
+
temb: torch.Tensor,
|
44 |
+
*args,
|
45 |
+
**kwargs,
|
46 |
+
) -> torch.Tensor:
|
47 |
+
do_structure_control = self.do_control and self.t in self.structure_schedule
|
48 |
+
|
49 |
+
hidden_states = input_tensor
|
50 |
+
|
51 |
+
hidden_states = self.norm1(hidden_states)
|
52 |
+
hidden_states = self.nonlinearity(hidden_states)
|
53 |
+
|
54 |
+
if self.upsample is not None:
|
55 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
56 |
+
if hidden_states.shape[0] >= 64:
|
57 |
+
input_tensor = input_tensor.contiguous()
|
58 |
+
hidden_states = hidden_states.contiguous()
|
59 |
+
input_tensor = self.upsample(input_tensor)
|
60 |
+
hidden_states = self.upsample(hidden_states)
|
61 |
+
elif self.downsample is not None:
|
62 |
+
input_tensor = self.downsample(input_tensor)
|
63 |
+
hidden_states = self.downsample(hidden_states)
|
64 |
+
|
65 |
+
hidden_states = self.conv1(hidden_states)
|
66 |
+
|
67 |
+
if self.time_emb_proj is not None:
|
68 |
+
if not self.skip_time_act:
|
69 |
+
temb = self.nonlinearity(temb)
|
70 |
+
temb = self.time_emb_proj(temb)[:, :, None, None]
|
71 |
+
|
72 |
+
if self.time_embedding_norm == "default":
|
73 |
+
if temb is not None:
|
74 |
+
hidden_states = hidden_states + temb
|
75 |
+
hidden_states = self.norm2(hidden_states)
|
76 |
+
elif self.time_embedding_norm == "scale_shift":
|
77 |
+
if temb is None:
|
78 |
+
raise ValueError(
|
79 |
+
f" `temb` should not be None when `time_embedding_norm` is {self.time_embedding_norm}"
|
80 |
+
)
|
81 |
+
time_scale, time_shift = torch.chunk(temb, 2, dim=1)
|
82 |
+
hidden_states = self.norm2(hidden_states)
|
83 |
+
hidden_states = hidden_states * (1 + time_scale) + time_shift
|
84 |
+
else:
|
85 |
+
hidden_states = self.norm2(hidden_states)
|
86 |
+
|
87 |
+
hidden_states = self.nonlinearity(hidden_states)
|
88 |
+
|
89 |
+
hidden_states = self.dropout(hidden_states)
|
90 |
+
hidden_states = self.conv2(hidden_states)
|
91 |
+
|
92 |
+
# Feature injection and AdaIN (hidden_states)
|
93 |
+
if do_structure_control and "hidden_states" in self.structure_target:
|
94 |
+
hidden_states = feature_injection(hidden_states, batch_order=self.batch_order)
|
95 |
+
|
96 |
+
if self.conv_shortcut is not None:
|
97 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
98 |
+
|
99 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
100 |
+
|
101 |
+
# Feature injection and AdaIN (output_tensor)
|
102 |
+
if do_structure_control and "output_tensor" in self.structure_target:
|
103 |
+
output_tensor = feature_injection(output_tensor, batch_order=self.batch_order)
|
104 |
+
|
105 |
+
return output_tensor
|
106 |
+
|
107 |
+
|
108 |
+
class AttnProcessor2_0: # From <class 'diffusers.models.attention_processor.AttnProcessor2_0'> (diffusers==0.28.0)
|
109 |
+
|
110 |
+
def __init__(self):
|
111 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
112 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
113 |
+
|
114 |
+
def __call__(
|
115 |
+
self,
|
116 |
+
attn: Attention,
|
117 |
+
hidden_states: torch.FloatTensor,
|
118 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
119 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
120 |
+
temb: Optional[torch.FloatTensor] = None,
|
121 |
+
*args,
|
122 |
+
**kwargs,
|
123 |
+
) -> torch.FloatTensor:
|
124 |
+
do_structure_control = attn.do_control and attn.t in attn.structure_schedule
|
125 |
+
do_appearance_control = attn.do_control and attn.t in attn.appearance_schedule
|
126 |
+
|
127 |
+
residual = hidden_states
|
128 |
+
if attn.spatial_norm is not None:
|
129 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
130 |
+
|
131 |
+
input_ndim = hidden_states.ndim
|
132 |
+
|
133 |
+
if input_ndim == 4:
|
134 |
+
batch_size, channel, height, width = hidden_states.shape
|
135 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
136 |
+
|
137 |
+
batch_size, sequence_length, _ = (
|
138 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
139 |
+
)
|
140 |
+
|
141 |
+
if attention_mask is not None:
|
142 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
143 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
144 |
+
# (batch, heads, source_length, target_length)
|
145 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
146 |
+
|
147 |
+
if attn.group_norm is not None:
|
148 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
149 |
+
|
150 |
+
no_encoder_hidden_states = encoder_hidden_states is None
|
151 |
+
if no_encoder_hidden_states:
|
152 |
+
encoder_hidden_states = hidden_states
|
153 |
+
elif attn.norm_cross:
|
154 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
155 |
+
|
156 |
+
if do_appearance_control: # Assume we only have this for self attention
|
157 |
+
hidden_states_normed = normalize(hidden_states, dim=-2) # B H D C
|
158 |
+
encoder_hidden_states_normed = normalize(encoder_hidden_states, dim=-2)
|
159 |
+
|
160 |
+
query_normed = attn.to_q(hidden_states_normed)
|
161 |
+
key_normed = attn.to_k(encoder_hidden_states_normed)
|
162 |
+
|
163 |
+
inner_dim = key_normed.shape[-1]
|
164 |
+
head_dim = inner_dim // attn.heads
|
165 |
+
query_normed = query_normed.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
166 |
+
key_normed = key_normed.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
167 |
+
|
168 |
+
# Match query and key injection with structure injection (if injection is happening this layer)
|
169 |
+
if do_structure_control:
|
170 |
+
if "query" in attn.structure_target:
|
171 |
+
query_normed = feature_injection(query_normed, batch_order=attn.batch_order)
|
172 |
+
if "key" in attn.structure_target:
|
173 |
+
key_normed = feature_injection(key_normed, batch_order=attn.batch_order)
|
174 |
+
|
175 |
+
# Appearance transfer (before)
|
176 |
+
if do_appearance_control and "before" in attn.appearance_target:
|
177 |
+
hidden_states = hidden_states.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
178 |
+
hidden_states = appearance_transfer(hidden_states, query_normed, key_normed, batch_order=attn.batch_order)
|
179 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
180 |
+
|
181 |
+
if no_encoder_hidden_states:
|
182 |
+
encoder_hidden_states = hidden_states
|
183 |
+
elif attn.norm_cross:
|
184 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
185 |
+
|
186 |
+
query = attn.to_q(hidden_states)
|
187 |
+
|
188 |
+
key = attn.to_k(encoder_hidden_states)
|
189 |
+
value = attn.to_v(encoder_hidden_states)
|
190 |
+
|
191 |
+
inner_dim = key.shape[-1]
|
192 |
+
head_dim = inner_dim // attn.heads
|
193 |
+
|
194 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
195 |
+
|
196 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
197 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
198 |
+
|
199 |
+
# Feature injection (query, key, and/or value)
|
200 |
+
if do_structure_control:
|
201 |
+
if "query" in attn.structure_target:
|
202 |
+
query = feature_injection(query, batch_order=attn.batch_order)
|
203 |
+
if "key" in attn.structure_target:
|
204 |
+
key = feature_injection(key, batch_order=attn.batch_order)
|
205 |
+
if "value" in attn.structure_target:
|
206 |
+
value = feature_injection(value, batch_order=attn.batch_order)
|
207 |
+
|
208 |
+
# Appearance transfer (value)
|
209 |
+
if do_appearance_control and "value" in attn.appearance_target:
|
210 |
+
value = appearance_transfer(value, query_normed, key_normed, batch_order=attn.batch_order)
|
211 |
+
|
212 |
+
# The output of sdp = (batch, num_heads, seq_len, head_dim)
|
213 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
214 |
+
hidden_states = F.scaled_dot_product_attention(
|
215 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
216 |
+
)
|
217 |
+
|
218 |
+
# Appearance transfer (after)
|
219 |
+
if do_appearance_control and "after" in attn.appearance_target:
|
220 |
+
hidden_states = appearance_transfer(hidden_states, query_normed, key_normed, batch_order=attn.batch_order)
|
221 |
+
|
222 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
223 |
+
hidden_states = hidden_states.to(query.dtype)
|
224 |
+
|
225 |
+
# Linear projection
|
226 |
+
hidden_states = attn.to_out[0](hidden_states, *args)
|
227 |
+
# Dropout
|
228 |
+
hidden_states = attn.to_out[1](hidden_states)
|
229 |
+
|
230 |
+
if input_ndim == 4:
|
231 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
232 |
+
|
233 |
+
if attn.residual_connection:
|
234 |
+
hidden_states = hidden_states + residual
|
235 |
+
|
236 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
237 |
+
|
238 |
+
return hidden_states
|
239 |
+
|
240 |
+
|
241 |
+
def register_control(
|
242 |
+
model,
|
243 |
+
timesteps,
|
244 |
+
control_schedule, # structure_conv, structure_attn, appearance_attn
|
245 |
+
control_target = [["output_tensor"], ["query", "key"], ["before"]],
|
246 |
+
):
|
247 |
+
# Assume timesteps in reverse order (T -> 0)
|
248 |
+
for block_type in ["encoder", "decoder", "middle"]:
|
249 |
+
blocks = {
|
250 |
+
"encoder": model.unet.down_blocks,
|
251 |
+
"decoder": model.unet.up_blocks,
|
252 |
+
"middle": [model.unet.mid_block],
|
253 |
+
}[block_type]
|
254 |
+
|
255 |
+
control_schedule_block = control_schedule[block_type]
|
256 |
+
if block_type == "middle":
|
257 |
+
control_schedule_block = [control_schedule_block]
|
258 |
+
|
259 |
+
for layer in range(len(control_schedule_block)):
|
260 |
+
# Convolution
|
261 |
+
num_blocks = len(blocks[layer].resnets) if hasattr(blocks[layer], "resnets") else 0
|
262 |
+
for block in range(num_blocks):
|
263 |
+
convolution = blocks[layer].resnets[block]
|
264 |
+
convolution.structure_target = control_target[0]
|
265 |
+
convolution.structure_schedule = get_schedule(
|
266 |
+
timesteps, get_elem(control_schedule_block[layer][0], block)
|
267 |
+
)
|
268 |
+
convolution.forward = MethodType(convolution_forward, convolution)
|
269 |
+
|
270 |
+
# Self-attention
|
271 |
+
num_blocks = len(blocks[layer].attentions) if hasattr(blocks[layer], "attentions") else 0
|
272 |
+
for block in range(num_blocks):
|
273 |
+
for transformer_block in blocks[layer].attentions[block].transformer_blocks:
|
274 |
+
attention = transformer_block.attn1
|
275 |
+
attention.structure_target = control_target[1]
|
276 |
+
attention.structure_schedule = get_schedule(
|
277 |
+
timesteps, get_elem(control_schedule_block[layer][1], block)
|
278 |
+
)
|
279 |
+
attention.appearance_target = control_target[2]
|
280 |
+
attention.appearance_schedule = get_schedule(
|
281 |
+
timesteps, get_elem(control_schedule_block[layer][2], block)
|
282 |
+
)
|
283 |
+
attention.processor = AttnProcessor2_0()
|
284 |
+
|
285 |
+
|
286 |
+
def register_attr(model, t, do_control, batch_order):
|
287 |
+
for layer_type in ["encoder", "decoder", "middle"]:
|
288 |
+
blocks = {"encoder": model.unet.down_blocks, "decoder": model.unet.up_blocks,
|
289 |
+
"middle": [model.unet.mid_block]}[layer_type]
|
290 |
+
for layer in blocks:
|
291 |
+
# Convolution
|
292 |
+
for module in layer.resnets:
|
293 |
+
module.t = t
|
294 |
+
module.do_control = do_control
|
295 |
+
module.batch_order = batch_order
|
296 |
+
# Self-attention
|
297 |
+
if hasattr(layer, "attentions"):
|
298 |
+
for block in layer.attentions:
|
299 |
+
for module in block.transformer_blocks:
|
300 |
+
module.attn1.t = t
|
301 |
+
module.attn1.do_control = do_control
|
302 |
+
module.attn1.batch_order = batch_order
|
utils/utils.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from os import environ
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
JPEG_QUALITY = 100
|
9 |
+
|
10 |
+
|
11 |
+
def seed_everything(seed):
|
12 |
+
random.seed(seed)
|
13 |
+
environ["PYTHONHASHSEED"] = str(seed)
|
14 |
+
np.random.seed(seed)
|
15 |
+
torch.manual_seed(seed)
|
16 |
+
torch.backends.cudnn.deterministic = True
|
17 |
+
torch.backends.cudnn.benchmark = False
|
18 |
+
|
19 |
+
|
20 |
+
def exists(x):
|
21 |
+
return x is not None
|
22 |
+
|
23 |
+
|
24 |
+
def get(x, default):
|
25 |
+
if exists(x):
|
26 |
+
return x
|
27 |
+
return default
|
28 |
+
|
29 |
+
|
30 |
+
def get_self_recurrence_schedule(schedule, num_inference_steps):
|
31 |
+
self_recurrence_schedule = [0] * num_inference_steps
|
32 |
+
for schedule_current in reversed(schedule):
|
33 |
+
if schedule_current is None or len(schedule_current) == 0:
|
34 |
+
continue
|
35 |
+
[start, end, repeat] = schedule_current
|
36 |
+
start_i = round(num_inference_steps * start)
|
37 |
+
end_i = round(num_inference_steps * end)
|
38 |
+
for i in range(start_i, end_i):
|
39 |
+
self_recurrence_schedule[i] = repeat
|
40 |
+
return self_recurrence_schedule
|
41 |
+
|
42 |
+
|
43 |
+
def batch_dict_to_tensor(batch_dict, batch_order):
|
44 |
+
batch_tensor = []
|
45 |
+
for batch_type in batch_order:
|
46 |
+
batch_tensor.append(batch_dict[batch_type])
|
47 |
+
batch_tensor = torch.cat(batch_tensor, dim=0)
|
48 |
+
return batch_tensor
|
49 |
+
|
50 |
+
|
51 |
+
def batch_tensor_to_dict(batch_tensor, batch_order):
|
52 |
+
batch_tensor_chunk = batch_tensor.chunk(len(batch_order))
|
53 |
+
batch_dict = {}
|
54 |
+
for i, batch_type in enumerate(batch_order):
|
55 |
+
batch_dict[batch_type] = batch_tensor_chunk[i]
|
56 |
+
return batch_dict
|
57 |
+
|
58 |
+
|
59 |
+
def noise_prev(scheduler, timestep, x_0, noise=None):
|
60 |
+
if scheduler.num_inference_steps is None:
|
61 |
+
raise ValueError(
|
62 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
63 |
+
)
|
64 |
+
|
65 |
+
if noise is None:
|
66 |
+
noise = torch.randn_like(x_0).to(x_0)
|
67 |
+
|
68 |
+
# From DDIMScheduler step function (hopefully this works)
|
69 |
+
timestep_i = (scheduler.timesteps == timestep).nonzero(as_tuple=True)[0][0].item()
|
70 |
+
if timestep_i + 1 >= scheduler.timesteps.shape[0]: # We are at t = 0 (ish)
|
71 |
+
return x_0
|
72 |
+
prev_timestep = scheduler.timesteps[timestep_i + 1:timestep_i + 2] # Make sure t is not 0-dim
|
73 |
+
|
74 |
+
x_t_prev = scheduler.add_noise(x_0, noise, prev_timestep)
|
75 |
+
return x_t_prev
|
76 |
+
|
77 |
+
|
78 |
+
def noise_t2t(scheduler, timestep, timestep_target, x_t, noise=None):
|
79 |
+
assert timestep_target >= timestep
|
80 |
+
if noise is None:
|
81 |
+
noise = torch.randn_like(x_t).to(x_t)
|
82 |
+
|
83 |
+
alphas_cumprod = scheduler.alphas_cumprod.to(device=x_t.device, dtype=x_t.dtype)
|
84 |
+
|
85 |
+
timestep = timestep.to(torch.long)
|
86 |
+
timestep_target = timestep_target.to(torch.long)
|
87 |
+
|
88 |
+
alpha_prod_t = alphas_cumprod[timestep]
|
89 |
+
alpha_prod_tt = alphas_cumprod[timestep_target]
|
90 |
+
alpha_prod = alpha_prod_tt / alpha_prod_t
|
91 |
+
|
92 |
+
sqrt_alpha_prod = (alpha_prod ** 0.5).flatten()
|
93 |
+
while len(sqrt_alpha_prod.shape) < len(x_t.shape):
|
94 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
95 |
+
|
96 |
+
sqrt_one_minus_alpha_prod = ((1 - alpha_prod) ** 0.5).flatten()
|
97 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(x_t.shape):
|
98 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
99 |
+
|
100 |
+
x_tt = sqrt_alpha_prod * x_t + sqrt_one_minus_alpha_prod * noise
|
101 |
+
return x_tt
|