twine-network
commited on
Commit
•
104a400
1
Parent(s):
e8bd5ab
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,1600 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
- llama-cpp
|
5 |
+
- gguf-my-repo
|
6 |
+
base_model: mixedbread-ai/mxbai-embed-xsmall-v1
|
7 |
+
library_name: sentence-transformers
|
8 |
+
license: apache-2.0
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
pipeline_tag: feature-extraction
|
12 |
+
model-index:
|
13 |
+
- name: mxbai-embed-xsmall-v1
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
type: Retrieval
|
17 |
+
dataset:
|
18 |
+
name: MTEB ArguAna
|
19 |
+
type: arguana
|
20 |
+
config: default
|
21 |
+
split: test
|
22 |
+
revision: None
|
23 |
+
metrics:
|
24 |
+
- type: ndcg_at_1
|
25 |
+
value: 25.18
|
26 |
+
- type: ndcg_at_3
|
27 |
+
value: 39.22
|
28 |
+
- type: ndcg_at_5
|
29 |
+
value: 43.93
|
30 |
+
- type: ndcg_at_10
|
31 |
+
value: 49.58
|
32 |
+
- type: ndcg_at_30
|
33 |
+
value: 53.41
|
34 |
+
- type: ndcg_at_100
|
35 |
+
value: 54.11
|
36 |
+
- type: map_at_1
|
37 |
+
value: 25.18
|
38 |
+
- type: map_at_3
|
39 |
+
value: 35.66
|
40 |
+
- type: map_at_5
|
41 |
+
value: 38.25
|
42 |
+
- type: map_at_10
|
43 |
+
value: 40.58
|
44 |
+
- type: map_at_30
|
45 |
+
value: 41.6
|
46 |
+
- type: map_at_100
|
47 |
+
value: 41.69
|
48 |
+
- type: recall_at_1
|
49 |
+
value: 25.18
|
50 |
+
- type: recall_at_3
|
51 |
+
value: 49.57
|
52 |
+
- type: recall_at_5
|
53 |
+
value: 61.09
|
54 |
+
- type: recall_at_10
|
55 |
+
value: 78.59
|
56 |
+
- type: recall_at_30
|
57 |
+
value: 94.03
|
58 |
+
- type: recall_at_100
|
59 |
+
value: 97.94
|
60 |
+
- type: precision_at_1
|
61 |
+
value: 25.18
|
62 |
+
- type: precision_at_3
|
63 |
+
value: 16.52
|
64 |
+
- type: precision_at_5
|
65 |
+
value: 12.22
|
66 |
+
- type: precision_at_10
|
67 |
+
value: 7.86
|
68 |
+
- type: precision_at_30
|
69 |
+
value: 3.13
|
70 |
+
- type: precision_at_100
|
71 |
+
value: 0.98
|
72 |
+
- type: accuracy_at_3
|
73 |
+
value: 49.57
|
74 |
+
- type: accuracy_at_5
|
75 |
+
value: 61.09
|
76 |
+
- type: accuracy_at_10
|
77 |
+
value: 78.59
|
78 |
+
- task:
|
79 |
+
type: Retrieval
|
80 |
+
dataset:
|
81 |
+
name: MTEB CQADupstackAndroidRetrieval
|
82 |
+
type: BeIR/cqadupstack
|
83 |
+
config: default
|
84 |
+
split: test
|
85 |
+
revision: None
|
86 |
+
metrics:
|
87 |
+
- type: ndcg_at_1
|
88 |
+
value: 44.35
|
89 |
+
- type: ndcg_at_3
|
90 |
+
value: 49.64
|
91 |
+
- type: ndcg_at_5
|
92 |
+
value: 51.73
|
93 |
+
- type: ndcg_at_10
|
94 |
+
value: 54.82
|
95 |
+
- type: ndcg_at_30
|
96 |
+
value: 57.64
|
97 |
+
- type: ndcg_at_100
|
98 |
+
value: 59.77
|
99 |
+
- type: map_at_1
|
100 |
+
value: 36.26
|
101 |
+
- type: map_at_3
|
102 |
+
value: 44.35
|
103 |
+
- type: map_at_5
|
104 |
+
value: 46.26
|
105 |
+
- type: map_at_10
|
106 |
+
value: 48.24
|
107 |
+
- type: map_at_30
|
108 |
+
value: 49.34
|
109 |
+
- type: map_at_100
|
110 |
+
value: 49.75
|
111 |
+
- type: recall_at_1
|
112 |
+
value: 36.26
|
113 |
+
- type: recall_at_3
|
114 |
+
value: 51.46
|
115 |
+
- type: recall_at_5
|
116 |
+
value: 57.78
|
117 |
+
- type: recall_at_10
|
118 |
+
value: 66.5
|
119 |
+
- type: recall_at_30
|
120 |
+
value: 77.19
|
121 |
+
- type: recall_at_100
|
122 |
+
value: 87.53
|
123 |
+
- type: precision_at_1
|
124 |
+
value: 44.35
|
125 |
+
- type: precision_at_3
|
126 |
+
value: 23.65
|
127 |
+
- type: precision_at_5
|
128 |
+
value: 16.88
|
129 |
+
- type: precision_at_10
|
130 |
+
value: 10.7
|
131 |
+
- type: precision_at_30
|
132 |
+
value: 4.53
|
133 |
+
- type: precision_at_100
|
134 |
+
value: 1.65
|
135 |
+
- type: accuracy_at_3
|
136 |
+
value: 60.51
|
137 |
+
- type: accuracy_at_5
|
138 |
+
value: 67.67
|
139 |
+
- type: accuracy_at_10
|
140 |
+
value: 74.68
|
141 |
+
- type: ndcg_at_1
|
142 |
+
value: 39.43
|
143 |
+
- type: ndcg_at_3
|
144 |
+
value: 44.13
|
145 |
+
- type: ndcg_at_5
|
146 |
+
value: 46.06
|
147 |
+
- type: ndcg_at_10
|
148 |
+
value: 48.31
|
149 |
+
- type: ndcg_at_30
|
150 |
+
value: 51.06
|
151 |
+
- type: ndcg_at_100
|
152 |
+
value: 53.07
|
153 |
+
- type: map_at_1
|
154 |
+
value: 31.27
|
155 |
+
- type: map_at_3
|
156 |
+
value: 39.07
|
157 |
+
- type: map_at_5
|
158 |
+
value: 40.83
|
159 |
+
- type: map_at_10
|
160 |
+
value: 42.23
|
161 |
+
- type: map_at_30
|
162 |
+
value: 43.27
|
163 |
+
- type: map_at_100
|
164 |
+
value: 43.66
|
165 |
+
- type: recall_at_1
|
166 |
+
value: 31.27
|
167 |
+
- type: recall_at_3
|
168 |
+
value: 45.89
|
169 |
+
- type: recall_at_5
|
170 |
+
value: 51.44
|
171 |
+
- type: recall_at_10
|
172 |
+
value: 58.65
|
173 |
+
- type: recall_at_30
|
174 |
+
value: 69.12
|
175 |
+
- type: recall_at_100
|
176 |
+
value: 78.72
|
177 |
+
- type: precision_at_1
|
178 |
+
value: 39.43
|
179 |
+
- type: precision_at_3
|
180 |
+
value: 21.61
|
181 |
+
- type: precision_at_5
|
182 |
+
value: 15.34
|
183 |
+
- type: precision_at_10
|
184 |
+
value: 9.27
|
185 |
+
- type: precision_at_30
|
186 |
+
value: 4.01
|
187 |
+
- type: precision_at_100
|
188 |
+
value: 1.52
|
189 |
+
- type: accuracy_at_3
|
190 |
+
value: 55.48
|
191 |
+
- type: accuracy_at_5
|
192 |
+
value: 60.76
|
193 |
+
- type: accuracy_at_10
|
194 |
+
value: 67.45
|
195 |
+
- type: ndcg_at_1
|
196 |
+
value: 45.58
|
197 |
+
- type: ndcg_at_3
|
198 |
+
value: 52.68
|
199 |
+
- type: ndcg_at_5
|
200 |
+
value: 55.28
|
201 |
+
- type: ndcg_at_10
|
202 |
+
value: 57.88
|
203 |
+
- type: ndcg_at_30
|
204 |
+
value: 60.6
|
205 |
+
- type: ndcg_at_100
|
206 |
+
value: 62.03
|
207 |
+
- type: map_at_1
|
208 |
+
value: 39.97
|
209 |
+
- type: map_at_3
|
210 |
+
value: 49.06
|
211 |
+
- type: map_at_5
|
212 |
+
value: 50.87
|
213 |
+
- type: map_at_10
|
214 |
+
value: 52.2
|
215 |
+
- type: map_at_30
|
216 |
+
value: 53.06
|
217 |
+
- type: map_at_100
|
218 |
+
value: 53.28
|
219 |
+
- type: recall_at_1
|
220 |
+
value: 39.97
|
221 |
+
- type: recall_at_3
|
222 |
+
value: 57.4
|
223 |
+
- type: recall_at_5
|
224 |
+
value: 63.83
|
225 |
+
- type: recall_at_10
|
226 |
+
value: 71.33
|
227 |
+
- type: recall_at_30
|
228 |
+
value: 81.81
|
229 |
+
- type: recall_at_100
|
230 |
+
value: 89.0
|
231 |
+
- type: precision_at_1
|
232 |
+
value: 45.58
|
233 |
+
- type: precision_at_3
|
234 |
+
value: 23.55
|
235 |
+
- type: precision_at_5
|
236 |
+
value: 16.01
|
237 |
+
- type: precision_at_10
|
238 |
+
value: 9.25
|
239 |
+
- type: precision_at_30
|
240 |
+
value: 3.67
|
241 |
+
- type: precision_at_100
|
242 |
+
value: 1.23
|
243 |
+
- type: accuracy_at_3
|
244 |
+
value: 62.76
|
245 |
+
- type: accuracy_at_5
|
246 |
+
value: 68.84
|
247 |
+
- type: accuracy_at_10
|
248 |
+
value: 75.8
|
249 |
+
- type: ndcg_at_1
|
250 |
+
value: 27.35
|
251 |
+
- type: ndcg_at_3
|
252 |
+
value: 34.23
|
253 |
+
- type: ndcg_at_5
|
254 |
+
value: 37.1
|
255 |
+
- type: ndcg_at_10
|
256 |
+
value: 40.26
|
257 |
+
- type: ndcg_at_30
|
258 |
+
value: 43.54
|
259 |
+
- type: ndcg_at_100
|
260 |
+
value: 45.9
|
261 |
+
- type: map_at_1
|
262 |
+
value: 25.28
|
263 |
+
- type: map_at_3
|
264 |
+
value: 31.68
|
265 |
+
- type: map_at_5
|
266 |
+
value: 33.38
|
267 |
+
- type: map_at_10
|
268 |
+
value: 34.79
|
269 |
+
- type: map_at_30
|
270 |
+
value: 35.67
|
271 |
+
- type: map_at_100
|
272 |
+
value: 35.96
|
273 |
+
- type: recall_at_1
|
274 |
+
value: 25.28
|
275 |
+
- type: recall_at_3
|
276 |
+
value: 38.95
|
277 |
+
- type: recall_at_5
|
278 |
+
value: 45.82
|
279 |
+
- type: recall_at_10
|
280 |
+
value: 55.11
|
281 |
+
- type: recall_at_30
|
282 |
+
value: 68.13
|
283 |
+
- type: recall_at_100
|
284 |
+
value: 80.88
|
285 |
+
- type: precision_at_1
|
286 |
+
value: 27.35
|
287 |
+
- type: precision_at_3
|
288 |
+
value: 14.65
|
289 |
+
- type: precision_at_5
|
290 |
+
value: 10.44
|
291 |
+
- type: precision_at_10
|
292 |
+
value: 6.37
|
293 |
+
- type: precision_at_30
|
294 |
+
value: 2.65
|
295 |
+
- type: precision_at_100
|
296 |
+
value: 0.97
|
297 |
+
- type: accuracy_at_3
|
298 |
+
value: 42.15
|
299 |
+
- type: accuracy_at_5
|
300 |
+
value: 49.15
|
301 |
+
- type: accuracy_at_10
|
302 |
+
value: 58.53
|
303 |
+
- type: ndcg_at_1
|
304 |
+
value: 18.91
|
305 |
+
- type: ndcg_at_3
|
306 |
+
value: 24.37
|
307 |
+
- type: ndcg_at_5
|
308 |
+
value: 26.11
|
309 |
+
- type: ndcg_at_10
|
310 |
+
value: 29.37
|
311 |
+
- type: ndcg_at_30
|
312 |
+
value: 33.22
|
313 |
+
- type: ndcg_at_100
|
314 |
+
value: 35.73
|
315 |
+
- type: map_at_1
|
316 |
+
value: 15.23
|
317 |
+
- type: map_at_3
|
318 |
+
value: 21.25
|
319 |
+
- type: map_at_5
|
320 |
+
value: 22.38
|
321 |
+
- type: map_at_10
|
322 |
+
value: 23.86
|
323 |
+
- type: map_at_30
|
324 |
+
value: 24.91
|
325 |
+
- type: map_at_100
|
326 |
+
value: 25.24
|
327 |
+
- type: recall_at_1
|
328 |
+
value: 15.23
|
329 |
+
- type: recall_at_3
|
330 |
+
value: 28.28
|
331 |
+
- type: recall_at_5
|
332 |
+
value: 32.67
|
333 |
+
- type: recall_at_10
|
334 |
+
value: 42.23
|
335 |
+
- type: recall_at_30
|
336 |
+
value: 56.87
|
337 |
+
- type: recall_at_100
|
338 |
+
value: 69.44
|
339 |
+
- type: precision_at_1
|
340 |
+
value: 18.91
|
341 |
+
- type: precision_at_3
|
342 |
+
value: 11.9
|
343 |
+
- type: precision_at_5
|
344 |
+
value: 8.48
|
345 |
+
- type: precision_at_10
|
346 |
+
value: 5.63
|
347 |
+
- type: precision_at_30
|
348 |
+
value: 2.64
|
349 |
+
- type: precision_at_100
|
350 |
+
value: 1.02
|
351 |
+
- type: accuracy_at_3
|
352 |
+
value: 33.95
|
353 |
+
- type: accuracy_at_5
|
354 |
+
value: 38.81
|
355 |
+
- type: accuracy_at_10
|
356 |
+
value: 49.13
|
357 |
+
- type: ndcg_at_1
|
358 |
+
value: 36.96
|
359 |
+
- type: ndcg_at_3
|
360 |
+
value: 42.48
|
361 |
+
- type: ndcg_at_5
|
362 |
+
value: 44.57
|
363 |
+
- type: ndcg_at_10
|
364 |
+
value: 47.13
|
365 |
+
- type: ndcg_at_30
|
366 |
+
value: 50.65
|
367 |
+
- type: ndcg_at_100
|
368 |
+
value: 53.14
|
369 |
+
- type: map_at_1
|
370 |
+
value: 30.1
|
371 |
+
- type: map_at_3
|
372 |
+
value: 37.97
|
373 |
+
- type: map_at_5
|
374 |
+
value: 39.62
|
375 |
+
- type: map_at_10
|
376 |
+
value: 41.06
|
377 |
+
- type: map_at_30
|
378 |
+
value: 42.13
|
379 |
+
- type: map_at_100
|
380 |
+
value: 42.53
|
381 |
+
- type: recall_at_1
|
382 |
+
value: 30.1
|
383 |
+
- type: recall_at_3
|
384 |
+
value: 45.98
|
385 |
+
- type: recall_at_5
|
386 |
+
value: 51.58
|
387 |
+
- type: recall_at_10
|
388 |
+
value: 59.24
|
389 |
+
- type: recall_at_30
|
390 |
+
value: 72.47
|
391 |
+
- type: recall_at_100
|
392 |
+
value: 84.53
|
393 |
+
- type: precision_at_1
|
394 |
+
value: 36.96
|
395 |
+
- type: precision_at_3
|
396 |
+
value: 20.5
|
397 |
+
- type: precision_at_5
|
398 |
+
value: 14.4
|
399 |
+
- type: precision_at_10
|
400 |
+
value: 8.62
|
401 |
+
- type: precision_at_30
|
402 |
+
value: 3.67
|
403 |
+
- type: precision_at_100
|
404 |
+
value: 1.38
|
405 |
+
- type: accuracy_at_3
|
406 |
+
value: 54.09
|
407 |
+
- type: accuracy_at_5
|
408 |
+
value: 60.25
|
409 |
+
- type: accuracy_at_10
|
410 |
+
value: 67.37
|
411 |
+
- type: ndcg_at_1
|
412 |
+
value: 28.65
|
413 |
+
- type: ndcg_at_3
|
414 |
+
value: 34.3
|
415 |
+
- type: ndcg_at_5
|
416 |
+
value: 36.8
|
417 |
+
- type: ndcg_at_10
|
418 |
+
value: 39.92
|
419 |
+
- type: ndcg_at_30
|
420 |
+
value: 42.97
|
421 |
+
- type: ndcg_at_100
|
422 |
+
value: 45.45
|
423 |
+
- type: map_at_1
|
424 |
+
value: 23.35
|
425 |
+
- type: map_at_3
|
426 |
+
value: 30.36
|
427 |
+
- type: map_at_5
|
428 |
+
value: 32.15
|
429 |
+
- type: map_at_10
|
430 |
+
value: 33.74
|
431 |
+
- type: map_at_30
|
432 |
+
value: 34.69
|
433 |
+
- type: map_at_100
|
434 |
+
value: 35.02
|
435 |
+
- type: recall_at_1
|
436 |
+
value: 23.35
|
437 |
+
- type: recall_at_3
|
438 |
+
value: 37.71
|
439 |
+
- type: recall_at_5
|
440 |
+
value: 44.23
|
441 |
+
- type: recall_at_10
|
442 |
+
value: 53.6
|
443 |
+
- type: recall_at_30
|
444 |
+
value: 64.69
|
445 |
+
- type: recall_at_100
|
446 |
+
value: 77.41
|
447 |
+
- type: precision_at_1
|
448 |
+
value: 28.65
|
449 |
+
- type: precision_at_3
|
450 |
+
value: 16.74
|
451 |
+
- type: precision_at_5
|
452 |
+
value: 12.21
|
453 |
+
- type: precision_at_10
|
454 |
+
value: 7.61
|
455 |
+
- type: precision_at_30
|
456 |
+
value: 3.29
|
457 |
+
- type: precision_at_100
|
458 |
+
value: 1.22
|
459 |
+
- type: accuracy_at_3
|
460 |
+
value: 44.86
|
461 |
+
- type: accuracy_at_5
|
462 |
+
value: 52.4
|
463 |
+
- type: accuracy_at_10
|
464 |
+
value: 61.07
|
465 |
+
- type: ndcg_at_1
|
466 |
+
value: 26.07
|
467 |
+
- type: ndcg_at_3
|
468 |
+
value: 31.62
|
469 |
+
- type: ndcg_at_5
|
470 |
+
value: 33.23
|
471 |
+
- type: ndcg_at_10
|
472 |
+
value: 35.62
|
473 |
+
- type: ndcg_at_30
|
474 |
+
value: 38.41
|
475 |
+
- type: ndcg_at_100
|
476 |
+
value: 40.81
|
477 |
+
- type: map_at_1
|
478 |
+
value: 22.96
|
479 |
+
- type: map_at_3
|
480 |
+
value: 28.85
|
481 |
+
- type: map_at_5
|
482 |
+
value: 29.97
|
483 |
+
- type: map_at_10
|
484 |
+
value: 31.11
|
485 |
+
- type: map_at_30
|
486 |
+
value: 31.86
|
487 |
+
- type: map_at_100
|
488 |
+
value: 32.15
|
489 |
+
- type: recall_at_1
|
490 |
+
value: 22.96
|
491 |
+
- type: recall_at_3
|
492 |
+
value: 35.14
|
493 |
+
- type: recall_at_5
|
494 |
+
value: 39.22
|
495 |
+
- type: recall_at_10
|
496 |
+
value: 46.52
|
497 |
+
- type: recall_at_30
|
498 |
+
value: 57.58
|
499 |
+
- type: recall_at_100
|
500 |
+
value: 70.57
|
501 |
+
- type: precision_at_1
|
502 |
+
value: 26.07
|
503 |
+
- type: precision_at_3
|
504 |
+
value: 14.11
|
505 |
+
- type: precision_at_5
|
506 |
+
value: 9.69
|
507 |
+
- type: precision_at_10
|
508 |
+
value: 5.81
|
509 |
+
- type: precision_at_30
|
510 |
+
value: 2.45
|
511 |
+
- type: precision_at_100
|
512 |
+
value: 0.92
|
513 |
+
- type: accuracy_at_3
|
514 |
+
value: 39.42
|
515 |
+
- type: accuracy_at_5
|
516 |
+
value: 43.41
|
517 |
+
- type: accuracy_at_10
|
518 |
+
value: 50.92
|
519 |
+
- type: ndcg_at_1
|
520 |
+
value: 21.78
|
521 |
+
- type: ndcg_at_3
|
522 |
+
value: 25.74
|
523 |
+
- type: ndcg_at_5
|
524 |
+
value: 27.86
|
525 |
+
- type: ndcg_at_10
|
526 |
+
value: 30.3
|
527 |
+
- type: ndcg_at_30
|
528 |
+
value: 33.51
|
529 |
+
- type: ndcg_at_100
|
530 |
+
value: 36.12
|
531 |
+
- type: map_at_1
|
532 |
+
value: 17.63
|
533 |
+
- type: map_at_3
|
534 |
+
value: 22.7
|
535 |
+
- type: map_at_5
|
536 |
+
value: 24.14
|
537 |
+
- type: map_at_10
|
538 |
+
value: 25.31
|
539 |
+
- type: map_at_30
|
540 |
+
value: 26.22
|
541 |
+
- type: map_at_100
|
542 |
+
value: 26.56
|
543 |
+
- type: recall_at_1
|
544 |
+
value: 17.63
|
545 |
+
- type: recall_at_3
|
546 |
+
value: 28.37
|
547 |
+
- type: recall_at_5
|
548 |
+
value: 33.99
|
549 |
+
- type: recall_at_10
|
550 |
+
value: 41.23
|
551 |
+
- type: recall_at_30
|
552 |
+
value: 53.69
|
553 |
+
- type: recall_at_100
|
554 |
+
value: 67.27
|
555 |
+
- type: precision_at_1
|
556 |
+
value: 21.78
|
557 |
+
- type: precision_at_3
|
558 |
+
value: 12.41
|
559 |
+
- type: precision_at_5
|
560 |
+
value: 9.07
|
561 |
+
- type: precision_at_10
|
562 |
+
value: 5.69
|
563 |
+
- type: precision_at_30
|
564 |
+
value: 2.61
|
565 |
+
- type: precision_at_100
|
566 |
+
value: 1.03
|
567 |
+
- type: accuracy_at_3
|
568 |
+
value: 33.62
|
569 |
+
- type: accuracy_at_5
|
570 |
+
value: 39.81
|
571 |
+
- type: accuracy_at_10
|
572 |
+
value: 47.32
|
573 |
+
- type: ndcg_at_1
|
574 |
+
value: 30.97
|
575 |
+
- type: ndcg_at_3
|
576 |
+
value: 36.13
|
577 |
+
- type: ndcg_at_5
|
578 |
+
value: 39.0
|
579 |
+
- type: ndcg_at_10
|
580 |
+
value: 41.78
|
581 |
+
- type: ndcg_at_30
|
582 |
+
value: 44.96
|
583 |
+
- type: ndcg_at_100
|
584 |
+
value: 47.52
|
585 |
+
- type: map_at_1
|
586 |
+
value: 26.05
|
587 |
+
- type: map_at_3
|
588 |
+
value: 32.77
|
589 |
+
- type: map_at_5
|
590 |
+
value: 34.6
|
591 |
+
- type: map_at_10
|
592 |
+
value: 35.93
|
593 |
+
- type: map_at_30
|
594 |
+
value: 36.88
|
595 |
+
- type: map_at_100
|
596 |
+
value: 37.22
|
597 |
+
- type: recall_at_1
|
598 |
+
value: 26.05
|
599 |
+
- type: recall_at_3
|
600 |
+
value: 40.0
|
601 |
+
- type: recall_at_5
|
602 |
+
value: 47.34
|
603 |
+
- type: recall_at_10
|
604 |
+
value: 55.34
|
605 |
+
- type: recall_at_30
|
606 |
+
value: 67.08
|
607 |
+
- type: recall_at_100
|
608 |
+
value: 80.2
|
609 |
+
- type: precision_at_1
|
610 |
+
value: 30.97
|
611 |
+
- type: precision_at_3
|
612 |
+
value: 16.6
|
613 |
+
- type: precision_at_5
|
614 |
+
value: 12.03
|
615 |
+
- type: precision_at_10
|
616 |
+
value: 7.3
|
617 |
+
- type: precision_at_30
|
618 |
+
value: 3.08
|
619 |
+
- type: precision_at_100
|
620 |
+
value: 1.15
|
621 |
+
- type: accuracy_at_3
|
622 |
+
value: 45.62
|
623 |
+
- type: accuracy_at_5
|
624 |
+
value: 53.64
|
625 |
+
- type: accuracy_at_10
|
626 |
+
value: 61.66
|
627 |
+
- type: ndcg_at_1
|
628 |
+
value: 29.64
|
629 |
+
- type: ndcg_at_3
|
630 |
+
value: 35.49
|
631 |
+
- type: ndcg_at_5
|
632 |
+
value: 37.77
|
633 |
+
- type: ndcg_at_10
|
634 |
+
value: 40.78
|
635 |
+
- type: ndcg_at_30
|
636 |
+
value: 44.59
|
637 |
+
- type: ndcg_at_100
|
638 |
+
value: 46.97
|
639 |
+
- type: map_at_1
|
640 |
+
value: 24.77
|
641 |
+
- type: map_at_3
|
642 |
+
value: 31.33
|
643 |
+
- type: map_at_5
|
644 |
+
value: 32.95
|
645 |
+
- type: map_at_10
|
646 |
+
value: 34.47
|
647 |
+
- type: map_at_30
|
648 |
+
value: 35.7
|
649 |
+
- type: map_at_100
|
650 |
+
value: 36.17
|
651 |
+
- type: recall_at_1
|
652 |
+
value: 24.77
|
653 |
+
- type: recall_at_3
|
654 |
+
value: 38.16
|
655 |
+
- type: recall_at_5
|
656 |
+
value: 44.1
|
657 |
+
- type: recall_at_10
|
658 |
+
value: 53.31
|
659 |
+
- type: recall_at_30
|
660 |
+
value: 68.43
|
661 |
+
- type: recall_at_100
|
662 |
+
value: 80.24
|
663 |
+
- type: precision_at_1
|
664 |
+
value: 29.64
|
665 |
+
- type: precision_at_3
|
666 |
+
value: 16.8
|
667 |
+
- type: precision_at_5
|
668 |
+
value: 12.21
|
669 |
+
- type: precision_at_10
|
670 |
+
value: 7.83
|
671 |
+
- type: precision_at_30
|
672 |
+
value: 3.89
|
673 |
+
- type: precision_at_100
|
674 |
+
value: 1.63
|
675 |
+
- type: accuracy_at_3
|
676 |
+
value: 45.45
|
677 |
+
- type: accuracy_at_5
|
678 |
+
value: 51.58
|
679 |
+
- type: accuracy_at_10
|
680 |
+
value: 61.07
|
681 |
+
- type: ndcg_at_1
|
682 |
+
value: 23.47
|
683 |
+
- type: ndcg_at_3
|
684 |
+
value: 27.98
|
685 |
+
- type: ndcg_at_5
|
686 |
+
value: 30.16
|
687 |
+
- type: ndcg_at_10
|
688 |
+
value: 32.97
|
689 |
+
- type: ndcg_at_30
|
690 |
+
value: 36.3
|
691 |
+
- type: ndcg_at_100
|
692 |
+
value: 38.47
|
693 |
+
- type: map_at_1
|
694 |
+
value: 21.63
|
695 |
+
- type: map_at_3
|
696 |
+
value: 26.02
|
697 |
+
- type: map_at_5
|
698 |
+
value: 27.32
|
699 |
+
- type: map_at_10
|
700 |
+
value: 28.51
|
701 |
+
- type: map_at_30
|
702 |
+
value: 29.39
|
703 |
+
- type: map_at_100
|
704 |
+
value: 29.66
|
705 |
+
- type: recall_at_1
|
706 |
+
value: 21.63
|
707 |
+
- type: recall_at_3
|
708 |
+
value: 31.47
|
709 |
+
- type: recall_at_5
|
710 |
+
value: 36.69
|
711 |
+
- type: recall_at_10
|
712 |
+
value: 44.95
|
713 |
+
- type: recall_at_30
|
714 |
+
value: 58.2
|
715 |
+
- type: recall_at_100
|
716 |
+
value: 69.83
|
717 |
+
- type: precision_at_1
|
718 |
+
value: 23.47
|
719 |
+
- type: precision_at_3
|
720 |
+
value: 11.71
|
721 |
+
- type: precision_at_5
|
722 |
+
value: 8.32
|
723 |
+
- type: precision_at_10
|
724 |
+
value: 5.23
|
725 |
+
- type: precision_at_30
|
726 |
+
value: 2.29
|
727 |
+
- type: precision_at_100
|
728 |
+
value: 0.86
|
729 |
+
- type: accuracy_at_3
|
730 |
+
value: 34.01
|
731 |
+
- type: accuracy_at_5
|
732 |
+
value: 39.37
|
733 |
+
- type: accuracy_at_10
|
734 |
+
value: 48.24
|
735 |
+
- type: ndcg_at_10
|
736 |
+
value: 41.59
|
737 |
+
- task:
|
738 |
+
type: Retrieval
|
739 |
+
dataset:
|
740 |
+
name: MTEB ClimateFEVER
|
741 |
+
type: climate-fever
|
742 |
+
config: default
|
743 |
+
split: test
|
744 |
+
revision: None
|
745 |
+
metrics:
|
746 |
+
- type: ndcg_at_1
|
747 |
+
value: 19.8
|
748 |
+
- type: ndcg_at_3
|
749 |
+
value: 17.93
|
750 |
+
- type: ndcg_at_5
|
751 |
+
value: 19.39
|
752 |
+
- type: ndcg_at_10
|
753 |
+
value: 22.42
|
754 |
+
- type: ndcg_at_30
|
755 |
+
value: 26.79
|
756 |
+
- type: ndcg_at_100
|
757 |
+
value: 29.84
|
758 |
+
- type: map_at_1
|
759 |
+
value: 9.09
|
760 |
+
- type: map_at_3
|
761 |
+
value: 12.91
|
762 |
+
- type: map_at_5
|
763 |
+
value: 14.12
|
764 |
+
- type: map_at_10
|
765 |
+
value: 15.45
|
766 |
+
- type: map_at_30
|
767 |
+
value: 16.73
|
768 |
+
- type: map_at_100
|
769 |
+
value: 17.21
|
770 |
+
- type: recall_at_1
|
771 |
+
value: 9.09
|
772 |
+
- type: recall_at_3
|
773 |
+
value: 16.81
|
774 |
+
- type: recall_at_5
|
775 |
+
value: 20.9
|
776 |
+
- type: recall_at_10
|
777 |
+
value: 27.65
|
778 |
+
- type: recall_at_30
|
779 |
+
value: 41.23
|
780 |
+
- type: recall_at_100
|
781 |
+
value: 53.57
|
782 |
+
- type: precision_at_1
|
783 |
+
value: 19.8
|
784 |
+
- type: precision_at_3
|
785 |
+
value: 13.36
|
786 |
+
- type: precision_at_5
|
787 |
+
value: 10.33
|
788 |
+
- type: precision_at_10
|
789 |
+
value: 7.15
|
790 |
+
- type: precision_at_30
|
791 |
+
value: 3.66
|
792 |
+
- type: precision_at_100
|
793 |
+
value: 1.49
|
794 |
+
- type: accuracy_at_3
|
795 |
+
value: 36.22
|
796 |
+
- type: accuracy_at_5
|
797 |
+
value: 44.1
|
798 |
+
- type: accuracy_at_10
|
799 |
+
value: 55.11
|
800 |
+
- task:
|
801 |
+
type: Retrieval
|
802 |
+
dataset:
|
803 |
+
name: MTEB DBPedia
|
804 |
+
type: dbpedia-entity
|
805 |
+
config: default
|
806 |
+
split: test
|
807 |
+
revision: None
|
808 |
+
metrics:
|
809 |
+
- type: ndcg_at_1
|
810 |
+
value: 42.75
|
811 |
+
- type: ndcg_at_3
|
812 |
+
value: 35.67
|
813 |
+
- type: ndcg_at_5
|
814 |
+
value: 33.58
|
815 |
+
- type: ndcg_at_10
|
816 |
+
value: 32.19
|
817 |
+
- type: ndcg_at_30
|
818 |
+
value: 31.82
|
819 |
+
- type: ndcg_at_100
|
820 |
+
value: 35.87
|
821 |
+
- type: map_at_1
|
822 |
+
value: 7.05
|
823 |
+
- type: map_at_3
|
824 |
+
value: 10.5
|
825 |
+
- type: map_at_5
|
826 |
+
value: 12.06
|
827 |
+
- type: map_at_10
|
828 |
+
value: 14.29
|
829 |
+
- type: map_at_30
|
830 |
+
value: 17.38
|
831 |
+
- type: map_at_100
|
832 |
+
value: 19.58
|
833 |
+
- type: recall_at_1
|
834 |
+
value: 7.05
|
835 |
+
- type: recall_at_3
|
836 |
+
value: 11.89
|
837 |
+
- type: recall_at_5
|
838 |
+
value: 14.7
|
839 |
+
- type: recall_at_10
|
840 |
+
value: 19.78
|
841 |
+
- type: recall_at_30
|
842 |
+
value: 29.88
|
843 |
+
- type: recall_at_100
|
844 |
+
value: 42.4
|
845 |
+
- type: precision_at_1
|
846 |
+
value: 54.25
|
847 |
+
- type: precision_at_3
|
848 |
+
value: 39.42
|
849 |
+
- type: precision_at_5
|
850 |
+
value: 33.15
|
851 |
+
- type: precision_at_10
|
852 |
+
value: 25.95
|
853 |
+
- type: precision_at_30
|
854 |
+
value: 15.51
|
855 |
+
- type: precision_at_100
|
856 |
+
value: 7.9
|
857 |
+
- type: accuracy_at_3
|
858 |
+
value: 72.0
|
859 |
+
- type: accuracy_at_5
|
860 |
+
value: 77.75
|
861 |
+
- type: accuracy_at_10
|
862 |
+
value: 83.5
|
863 |
+
- task:
|
864 |
+
type: Retrieval
|
865 |
+
dataset:
|
866 |
+
name: MTEB FEVER
|
867 |
+
type: fever
|
868 |
+
config: default
|
869 |
+
split: test
|
870 |
+
revision: None
|
871 |
+
metrics:
|
872 |
+
- type: ndcg_at_1
|
873 |
+
value: 40.19
|
874 |
+
- type: ndcg_at_3
|
875 |
+
value: 50.51
|
876 |
+
- type: ndcg_at_5
|
877 |
+
value: 53.51
|
878 |
+
- type: ndcg_at_10
|
879 |
+
value: 56.45
|
880 |
+
- type: ndcg_at_30
|
881 |
+
value: 58.74
|
882 |
+
- type: ndcg_at_100
|
883 |
+
value: 59.72
|
884 |
+
- type: map_at_1
|
885 |
+
value: 37.56
|
886 |
+
- type: map_at_3
|
887 |
+
value: 46.74
|
888 |
+
- type: map_at_5
|
889 |
+
value: 48.46
|
890 |
+
- type: map_at_10
|
891 |
+
value: 49.7
|
892 |
+
- type: map_at_30
|
893 |
+
value: 50.31
|
894 |
+
- type: map_at_100
|
895 |
+
value: 50.43
|
896 |
+
- type: recall_at_1
|
897 |
+
value: 37.56
|
898 |
+
- type: recall_at_3
|
899 |
+
value: 58.28
|
900 |
+
- type: recall_at_5
|
901 |
+
value: 65.45
|
902 |
+
- type: recall_at_10
|
903 |
+
value: 74.28
|
904 |
+
- type: recall_at_30
|
905 |
+
value: 83.42
|
906 |
+
- type: recall_at_100
|
907 |
+
value: 88.76
|
908 |
+
- type: precision_at_1
|
909 |
+
value: 40.19
|
910 |
+
- type: precision_at_3
|
911 |
+
value: 20.99
|
912 |
+
- type: precision_at_5
|
913 |
+
value: 14.24
|
914 |
+
- type: precision_at_10
|
915 |
+
value: 8.12
|
916 |
+
- type: precision_at_30
|
917 |
+
value: 3.06
|
918 |
+
- type: precision_at_100
|
919 |
+
value: 0.98
|
920 |
+
- type: accuracy_at_3
|
921 |
+
value: 62.3
|
922 |
+
- type: accuracy_at_5
|
923 |
+
value: 69.94
|
924 |
+
- type: accuracy_at_10
|
925 |
+
value: 79.13
|
926 |
+
- task:
|
927 |
+
type: Retrieval
|
928 |
+
dataset:
|
929 |
+
name: MTEB FiQA2018
|
930 |
+
type: fiqa
|
931 |
+
config: default
|
932 |
+
split: test
|
933 |
+
revision: None
|
934 |
+
metrics:
|
935 |
+
- type: ndcg_at_1
|
936 |
+
value: 34.41
|
937 |
+
- type: ndcg_at_3
|
938 |
+
value: 33.2
|
939 |
+
- type: ndcg_at_5
|
940 |
+
value: 34.71
|
941 |
+
- type: ndcg_at_10
|
942 |
+
value: 37.1
|
943 |
+
- type: ndcg_at_30
|
944 |
+
value: 40.88
|
945 |
+
- type: ndcg_at_100
|
946 |
+
value: 44.12
|
947 |
+
- type: map_at_1
|
948 |
+
value: 17.27
|
949 |
+
- type: map_at_3
|
950 |
+
value: 25.36
|
951 |
+
- type: map_at_5
|
952 |
+
value: 27.76
|
953 |
+
- type: map_at_10
|
954 |
+
value: 29.46
|
955 |
+
- type: map_at_30
|
956 |
+
value: 30.74
|
957 |
+
- type: map_at_100
|
958 |
+
value: 31.29
|
959 |
+
- type: recall_at_1
|
960 |
+
value: 17.27
|
961 |
+
- type: recall_at_3
|
962 |
+
value: 30.46
|
963 |
+
- type: recall_at_5
|
964 |
+
value: 36.91
|
965 |
+
- type: recall_at_10
|
966 |
+
value: 44.47
|
967 |
+
- type: recall_at_30
|
968 |
+
value: 56.71
|
969 |
+
- type: recall_at_100
|
970 |
+
value: 70.72
|
971 |
+
- type: precision_at_1
|
972 |
+
value: 34.41
|
973 |
+
- type: precision_at_3
|
974 |
+
value: 22.32
|
975 |
+
- type: precision_at_5
|
976 |
+
value: 16.91
|
977 |
+
- type: precision_at_10
|
978 |
+
value: 10.53
|
979 |
+
- type: precision_at_30
|
980 |
+
value: 4.62
|
981 |
+
- type: precision_at_100
|
982 |
+
value: 1.79
|
983 |
+
- type: accuracy_at_3
|
984 |
+
value: 50.77
|
985 |
+
- type: accuracy_at_5
|
986 |
+
value: 57.56
|
987 |
+
- type: accuracy_at_10
|
988 |
+
value: 65.12
|
989 |
+
- task:
|
990 |
+
type: Retrieval
|
991 |
+
dataset:
|
992 |
+
name: MTEB HotpotQA
|
993 |
+
type: hotpotqa
|
994 |
+
config: default
|
995 |
+
split: test
|
996 |
+
revision: None
|
997 |
+
metrics:
|
998 |
+
- type: ndcg_at_1
|
999 |
+
value: 57.93
|
1000 |
+
- type: ndcg_at_3
|
1001 |
+
value: 44.21
|
1002 |
+
- type: ndcg_at_5
|
1003 |
+
value: 46.4
|
1004 |
+
- type: ndcg_at_10
|
1005 |
+
value: 48.37
|
1006 |
+
- type: ndcg_at_30
|
1007 |
+
value: 50.44
|
1008 |
+
- type: ndcg_at_100
|
1009 |
+
value: 51.86
|
1010 |
+
- type: map_at_1
|
1011 |
+
value: 28.97
|
1012 |
+
- type: map_at_3
|
1013 |
+
value: 36.79
|
1014 |
+
- type: map_at_5
|
1015 |
+
value: 38.31
|
1016 |
+
- type: map_at_10
|
1017 |
+
value: 39.32
|
1018 |
+
- type: map_at_30
|
1019 |
+
value: 39.99
|
1020 |
+
- type: map_at_100
|
1021 |
+
value: 40.2
|
1022 |
+
- type: recall_at_1
|
1023 |
+
value: 28.97
|
1024 |
+
- type: recall_at_3
|
1025 |
+
value: 41.01
|
1026 |
+
- type: recall_at_5
|
1027 |
+
value: 45.36
|
1028 |
+
- type: recall_at_10
|
1029 |
+
value: 50.32
|
1030 |
+
- type: recall_at_30
|
1031 |
+
value: 57.38
|
1032 |
+
- type: recall_at_100
|
1033 |
+
value: 64.06
|
1034 |
+
- type: precision_at_1
|
1035 |
+
value: 57.93
|
1036 |
+
- type: precision_at_3
|
1037 |
+
value: 27.34
|
1038 |
+
- type: precision_at_5
|
1039 |
+
value: 18.14
|
1040 |
+
- type: precision_at_10
|
1041 |
+
value: 10.06
|
1042 |
+
- type: precision_at_30
|
1043 |
+
value: 3.82
|
1044 |
+
- type: precision_at_100
|
1045 |
+
value: 1.28
|
1046 |
+
- type: accuracy_at_3
|
1047 |
+
value: 71.03
|
1048 |
+
- type: accuracy_at_5
|
1049 |
+
value: 75.14
|
1050 |
+
- type: accuracy_at_10
|
1051 |
+
value: 79.84
|
1052 |
+
- task:
|
1053 |
+
type: Retrieval
|
1054 |
+
dataset:
|
1055 |
+
name: MTEB MSMARCO
|
1056 |
+
type: msmarco
|
1057 |
+
config: default
|
1058 |
+
split: dev
|
1059 |
+
revision: None
|
1060 |
+
metrics:
|
1061 |
+
- type: ndcg_at_1
|
1062 |
+
value: 19.74
|
1063 |
+
- type: ndcg_at_3
|
1064 |
+
value: 29.47
|
1065 |
+
- type: ndcg_at_5
|
1066 |
+
value: 32.99
|
1067 |
+
- type: ndcg_at_10
|
1068 |
+
value: 36.76
|
1069 |
+
- type: ndcg_at_30
|
1070 |
+
value: 40.52
|
1071 |
+
- type: ndcg_at_100
|
1072 |
+
value: 42.78
|
1073 |
+
- type: map_at_1
|
1074 |
+
value: 19.2
|
1075 |
+
- type: map_at_3
|
1076 |
+
value: 26.81
|
1077 |
+
- type: map_at_5
|
1078 |
+
value: 28.78
|
1079 |
+
- type: map_at_10
|
1080 |
+
value: 30.35
|
1081 |
+
- type: map_at_30
|
1082 |
+
value: 31.3
|
1083 |
+
- type: map_at_100
|
1084 |
+
value: 31.57
|
1085 |
+
- type: recall_at_1
|
1086 |
+
value: 19.2
|
1087 |
+
- type: recall_at_3
|
1088 |
+
value: 36.59
|
1089 |
+
- type: recall_at_5
|
1090 |
+
value: 45.08
|
1091 |
+
- type: recall_at_10
|
1092 |
+
value: 56.54
|
1093 |
+
- type: recall_at_30
|
1094 |
+
value: 72.05
|
1095 |
+
- type: recall_at_100
|
1096 |
+
value: 84.73
|
1097 |
+
- type: precision_at_1
|
1098 |
+
value: 19.74
|
1099 |
+
- type: precision_at_3
|
1100 |
+
value: 12.61
|
1101 |
+
- type: precision_at_5
|
1102 |
+
value: 9.37
|
1103 |
+
- type: precision_at_10
|
1104 |
+
value: 5.89
|
1105 |
+
- type: precision_at_30
|
1106 |
+
value: 2.52
|
1107 |
+
- type: precision_at_100
|
1108 |
+
value: 0.89
|
1109 |
+
- type: accuracy_at_3
|
1110 |
+
value: 37.38
|
1111 |
+
- type: accuracy_at_5
|
1112 |
+
value: 46.06
|
1113 |
+
- type: accuracy_at_10
|
1114 |
+
value: 57.62
|
1115 |
+
- task:
|
1116 |
+
type: Retrieval
|
1117 |
+
dataset:
|
1118 |
+
name: MTEB NQ
|
1119 |
+
type: nq
|
1120 |
+
config: default
|
1121 |
+
split: test
|
1122 |
+
revision: None
|
1123 |
+
metrics:
|
1124 |
+
- type: ndcg_at_1
|
1125 |
+
value: 25.9
|
1126 |
+
- type: ndcg_at_3
|
1127 |
+
value: 35.97
|
1128 |
+
- type: ndcg_at_5
|
1129 |
+
value: 40.27
|
1130 |
+
- type: ndcg_at_10
|
1131 |
+
value: 44.44
|
1132 |
+
- type: ndcg_at_30
|
1133 |
+
value: 48.31
|
1134 |
+
- type: ndcg_at_100
|
1135 |
+
value: 50.14
|
1136 |
+
- type: map_at_1
|
1137 |
+
value: 23.03
|
1138 |
+
- type: map_at_3
|
1139 |
+
value: 32.45
|
1140 |
+
- type: map_at_5
|
1141 |
+
value: 34.99
|
1142 |
+
- type: map_at_10
|
1143 |
+
value: 36.84
|
1144 |
+
- type: map_at_30
|
1145 |
+
value: 37.92
|
1146 |
+
- type: map_at_100
|
1147 |
+
value: 38.16
|
1148 |
+
- type: recall_at_1
|
1149 |
+
value: 23.03
|
1150 |
+
- type: recall_at_3
|
1151 |
+
value: 43.49
|
1152 |
+
- type: recall_at_5
|
1153 |
+
value: 53.41
|
1154 |
+
- type: recall_at_10
|
1155 |
+
value: 65.65
|
1156 |
+
- type: recall_at_30
|
1157 |
+
value: 80.79
|
1158 |
+
- type: recall_at_100
|
1159 |
+
value: 90.59
|
1160 |
+
- type: precision_at_1
|
1161 |
+
value: 25.9
|
1162 |
+
- type: precision_at_3
|
1163 |
+
value: 16.76
|
1164 |
+
- type: precision_at_5
|
1165 |
+
value: 12.54
|
1166 |
+
- type: precision_at_10
|
1167 |
+
value: 7.78
|
1168 |
+
- type: precision_at_30
|
1169 |
+
value: 3.23
|
1170 |
+
- type: precision_at_100
|
1171 |
+
value: 1.1
|
1172 |
+
- type: accuracy_at_3
|
1173 |
+
value: 47.31
|
1174 |
+
- type: accuracy_at_5
|
1175 |
+
value: 57.16
|
1176 |
+
- type: accuracy_at_10
|
1177 |
+
value: 69.09
|
1178 |
+
- task:
|
1179 |
+
type: Retrieval
|
1180 |
+
dataset:
|
1181 |
+
name: MTEB NFCorpus
|
1182 |
+
type: nfcorpus
|
1183 |
+
config: default
|
1184 |
+
split: test
|
1185 |
+
revision: None
|
1186 |
+
metrics:
|
1187 |
+
- type: ndcg_at_1
|
1188 |
+
value: 40.87
|
1189 |
+
- type: ndcg_at_3
|
1190 |
+
value: 36.79
|
1191 |
+
- type: ndcg_at_5
|
1192 |
+
value: 34.47
|
1193 |
+
- type: ndcg_at_10
|
1194 |
+
value: 32.05
|
1195 |
+
- type: ndcg_at_30
|
1196 |
+
value: 29.23
|
1197 |
+
- type: ndcg_at_100
|
1198 |
+
value: 29.84
|
1199 |
+
- type: map_at_1
|
1200 |
+
value: 5.05
|
1201 |
+
- type: map_at_3
|
1202 |
+
value: 8.5
|
1203 |
+
- type: map_at_5
|
1204 |
+
value: 9.87
|
1205 |
+
- type: map_at_10
|
1206 |
+
value: 11.71
|
1207 |
+
- type: map_at_30
|
1208 |
+
value: 13.48
|
1209 |
+
- type: map_at_100
|
1210 |
+
value: 14.86
|
1211 |
+
- type: recall_at_1
|
1212 |
+
value: 5.05
|
1213 |
+
- type: recall_at_3
|
1214 |
+
value: 9.55
|
1215 |
+
- type: recall_at_5
|
1216 |
+
value: 11.91
|
1217 |
+
- type: recall_at_10
|
1218 |
+
value: 16.07
|
1219 |
+
- type: recall_at_30
|
1220 |
+
value: 22.13
|
1221 |
+
- type: recall_at_100
|
1222 |
+
value: 30.7
|
1223 |
+
- type: precision_at_1
|
1224 |
+
value: 42.72
|
1225 |
+
- type: precision_at_3
|
1226 |
+
value: 34.78
|
1227 |
+
- type: precision_at_5
|
1228 |
+
value: 30.03
|
1229 |
+
- type: precision_at_10
|
1230 |
+
value: 23.93
|
1231 |
+
- type: precision_at_30
|
1232 |
+
value: 14.61
|
1233 |
+
- type: precision_at_100
|
1234 |
+
value: 7.85
|
1235 |
+
- type: accuracy_at_3
|
1236 |
+
value: 58.2
|
1237 |
+
- type: accuracy_at_5
|
1238 |
+
value: 64.09
|
1239 |
+
- type: accuracy_at_10
|
1240 |
+
value: 69.35
|
1241 |
+
- task:
|
1242 |
+
type: Retrieval
|
1243 |
+
dataset:
|
1244 |
+
name: MTEB QuoraRetrieval
|
1245 |
+
type: quora
|
1246 |
+
config: default
|
1247 |
+
split: test
|
1248 |
+
revision: None
|
1249 |
+
metrics:
|
1250 |
+
- type: ndcg_at_1
|
1251 |
+
value: 80.62
|
1252 |
+
- type: ndcg_at_3
|
1253 |
+
value: 84.62
|
1254 |
+
- type: ndcg_at_5
|
1255 |
+
value: 86.25
|
1256 |
+
- type: ndcg_at_10
|
1257 |
+
value: 87.7
|
1258 |
+
- type: ndcg_at_30
|
1259 |
+
value: 88.63
|
1260 |
+
- type: ndcg_at_100
|
1261 |
+
value: 88.95
|
1262 |
+
- type: map_at_1
|
1263 |
+
value: 69.91
|
1264 |
+
- type: map_at_3
|
1265 |
+
value: 80.7
|
1266 |
+
- type: map_at_5
|
1267 |
+
value: 82.57
|
1268 |
+
- type: map_at_10
|
1269 |
+
value: 83.78
|
1270 |
+
- type: map_at_30
|
1271 |
+
value: 84.33
|
1272 |
+
- type: map_at_100
|
1273 |
+
value: 84.44
|
1274 |
+
- type: recall_at_1
|
1275 |
+
value: 69.91
|
1276 |
+
- type: recall_at_3
|
1277 |
+
value: 86.36
|
1278 |
+
- type: recall_at_5
|
1279 |
+
value: 90.99
|
1280 |
+
- type: recall_at_10
|
1281 |
+
value: 95.19
|
1282 |
+
- type: recall_at_30
|
1283 |
+
value: 98.25
|
1284 |
+
- type: recall_at_100
|
1285 |
+
value: 99.47
|
1286 |
+
- type: precision_at_1
|
1287 |
+
value: 80.62
|
1288 |
+
- type: precision_at_3
|
1289 |
+
value: 37.03
|
1290 |
+
- type: precision_at_5
|
1291 |
+
value: 24.36
|
1292 |
+
- type: precision_at_10
|
1293 |
+
value: 13.4
|
1294 |
+
- type: precision_at_30
|
1295 |
+
value: 4.87
|
1296 |
+
- type: precision_at_100
|
1297 |
+
value: 1.53
|
1298 |
+
- type: accuracy_at_3
|
1299 |
+
value: 92.25
|
1300 |
+
- type: accuracy_at_5
|
1301 |
+
value: 95.29
|
1302 |
+
- type: accuracy_at_10
|
1303 |
+
value: 97.74
|
1304 |
+
- task:
|
1305 |
+
type: Retrieval
|
1306 |
+
dataset:
|
1307 |
+
name: MTEB SCIDOCS
|
1308 |
+
type: scidocs
|
1309 |
+
config: default
|
1310 |
+
split: test
|
1311 |
+
revision: None
|
1312 |
+
metrics:
|
1313 |
+
- type: ndcg_at_1
|
1314 |
+
value: 24.1
|
1315 |
+
- type: ndcg_at_3
|
1316 |
+
value: 20.18
|
1317 |
+
- type: ndcg_at_5
|
1318 |
+
value: 17.72
|
1319 |
+
- type: ndcg_at_10
|
1320 |
+
value: 21.5
|
1321 |
+
- type: ndcg_at_30
|
1322 |
+
value: 26.66
|
1323 |
+
- type: ndcg_at_100
|
1324 |
+
value: 30.95
|
1325 |
+
- type: map_at_1
|
1326 |
+
value: 4.88
|
1327 |
+
- type: map_at_3
|
1328 |
+
value: 9.09
|
1329 |
+
- type: map_at_5
|
1330 |
+
value: 10.99
|
1331 |
+
- type: map_at_10
|
1332 |
+
value: 12.93
|
1333 |
+
- type: map_at_30
|
1334 |
+
value: 14.71
|
1335 |
+
- type: map_at_100
|
1336 |
+
value: 15.49
|
1337 |
+
- type: recall_at_1
|
1338 |
+
value: 4.88
|
1339 |
+
- type: recall_at_3
|
1340 |
+
value: 11.55
|
1341 |
+
- type: recall_at_5
|
1342 |
+
value: 15.91
|
1343 |
+
- type: recall_at_10
|
1344 |
+
value: 22.82
|
1345 |
+
- type: recall_at_30
|
1346 |
+
value: 35.7
|
1347 |
+
- type: recall_at_100
|
1348 |
+
value: 50.41
|
1349 |
+
- type: precision_at_1
|
1350 |
+
value: 24.1
|
1351 |
+
- type: precision_at_3
|
1352 |
+
value: 19.0
|
1353 |
+
- type: precision_at_5
|
1354 |
+
value: 15.72
|
1355 |
+
- type: precision_at_10
|
1356 |
+
value: 11.27
|
1357 |
+
- type: precision_at_30
|
1358 |
+
value: 5.87
|
1359 |
+
- type: precision_at_100
|
1360 |
+
value: 2.49
|
1361 |
+
- type: accuracy_at_3
|
1362 |
+
value: 43.0
|
1363 |
+
- type: accuracy_at_5
|
1364 |
+
value: 51.6
|
1365 |
+
- type: accuracy_at_10
|
1366 |
+
value: 62.7
|
1367 |
+
- task:
|
1368 |
+
type: Retrieval
|
1369 |
+
dataset:
|
1370 |
+
name: MTEB SciFact
|
1371 |
+
type: scifact
|
1372 |
+
config: default
|
1373 |
+
split: test
|
1374 |
+
revision: None
|
1375 |
+
metrics:
|
1376 |
+
- type: ndcg_at_1
|
1377 |
+
value: 52.33
|
1378 |
+
- type: ndcg_at_3
|
1379 |
+
value: 61.47
|
1380 |
+
- type: ndcg_at_5
|
1381 |
+
value: 63.82
|
1382 |
+
- type: ndcg_at_10
|
1383 |
+
value: 65.81
|
1384 |
+
- type: ndcg_at_30
|
1385 |
+
value: 67.75
|
1386 |
+
- type: ndcg_at_100
|
1387 |
+
value: 68.96
|
1388 |
+
- type: map_at_1
|
1389 |
+
value: 50.46
|
1390 |
+
- type: map_at_3
|
1391 |
+
value: 58.51
|
1392 |
+
- type: map_at_5
|
1393 |
+
value: 60.12
|
1394 |
+
- type: map_at_10
|
1395 |
+
value: 61.07
|
1396 |
+
- type: map_at_30
|
1397 |
+
value: 61.64
|
1398 |
+
- type: map_at_100
|
1399 |
+
value: 61.8
|
1400 |
+
- type: recall_at_1
|
1401 |
+
value: 50.46
|
1402 |
+
- type: recall_at_3
|
1403 |
+
value: 67.81
|
1404 |
+
- type: recall_at_5
|
1405 |
+
value: 73.6
|
1406 |
+
- type: recall_at_10
|
1407 |
+
value: 79.31
|
1408 |
+
- type: recall_at_30
|
1409 |
+
value: 86.8
|
1410 |
+
- type: recall_at_100
|
1411 |
+
value: 93.5
|
1412 |
+
- type: precision_at_1
|
1413 |
+
value: 52.33
|
1414 |
+
- type: precision_at_3
|
1415 |
+
value: 24.56
|
1416 |
+
- type: precision_at_5
|
1417 |
+
value: 16.27
|
1418 |
+
- type: precision_at_10
|
1419 |
+
value: 8.9
|
1420 |
+
- type: precision_at_30
|
1421 |
+
value: 3.28
|
1422 |
+
- type: precision_at_100
|
1423 |
+
value: 1.06
|
1424 |
+
- type: accuracy_at_3
|
1425 |
+
value: 69.67
|
1426 |
+
- type: accuracy_at_5
|
1427 |
+
value: 75.0
|
1428 |
+
- type: accuracy_at_10
|
1429 |
+
value: 80.67
|
1430 |
+
- task:
|
1431 |
+
type: Retrieval
|
1432 |
+
dataset:
|
1433 |
+
name: MTEB TRECCOVID
|
1434 |
+
type: trec-covid
|
1435 |
+
config: default
|
1436 |
+
split: test
|
1437 |
+
revision: None
|
1438 |
+
metrics:
|
1439 |
+
- type: ndcg_at_1
|
1440 |
+
value: 57.0
|
1441 |
+
- type: ndcg_at_3
|
1442 |
+
value: 53.78
|
1443 |
+
- type: ndcg_at_5
|
1444 |
+
value: 52.62
|
1445 |
+
- type: ndcg_at_10
|
1446 |
+
value: 48.9
|
1447 |
+
- type: ndcg_at_30
|
1448 |
+
value: 44.2
|
1449 |
+
- type: ndcg_at_100
|
1450 |
+
value: 36.53
|
1451 |
+
- type: map_at_1
|
1452 |
+
value: 0.16
|
1453 |
+
- type: map_at_3
|
1454 |
+
value: 0.41
|
1455 |
+
- type: map_at_5
|
1456 |
+
value: 0.62
|
1457 |
+
- type: map_at_10
|
1458 |
+
value: 1.07
|
1459 |
+
- type: map_at_30
|
1460 |
+
value: 2.46
|
1461 |
+
- type: map_at_100
|
1462 |
+
value: 5.52
|
1463 |
+
- type: recall_at_1
|
1464 |
+
value: 0.16
|
1465 |
+
- type: recall_at_3
|
1466 |
+
value: 0.45
|
1467 |
+
- type: recall_at_5
|
1468 |
+
value: 0.72
|
1469 |
+
- type: recall_at_10
|
1470 |
+
value: 1.33
|
1471 |
+
- type: recall_at_30
|
1472 |
+
value: 3.46
|
1473 |
+
- type: recall_at_100
|
1474 |
+
value: 8.73
|
1475 |
+
- type: precision_at_1
|
1476 |
+
value: 62.0
|
1477 |
+
- type: precision_at_3
|
1478 |
+
value: 57.33
|
1479 |
+
- type: precision_at_5
|
1480 |
+
value: 56.0
|
1481 |
+
- type: precision_at_10
|
1482 |
+
value: 52.0
|
1483 |
+
- type: precision_at_30
|
1484 |
+
value: 46.2
|
1485 |
+
- type: precision_at_100
|
1486 |
+
value: 37.22
|
1487 |
+
- type: accuracy_at_3
|
1488 |
+
value: 82.0
|
1489 |
+
- type: accuracy_at_5
|
1490 |
+
value: 90.0
|
1491 |
+
- type: accuracy_at_10
|
1492 |
+
value: 92.0
|
1493 |
+
- task:
|
1494 |
+
type: Retrieval
|
1495 |
+
dataset:
|
1496 |
+
name: MTEB Touche2020
|
1497 |
+
type: webis-touche2020
|
1498 |
+
config: default
|
1499 |
+
split: test
|
1500 |
+
revision: None
|
1501 |
+
metrics:
|
1502 |
+
- type: ndcg_at_1
|
1503 |
+
value: 20.41
|
1504 |
+
- type: ndcg_at_3
|
1505 |
+
value: 17.62
|
1506 |
+
- type: ndcg_at_5
|
1507 |
+
value: 17.16
|
1508 |
+
- type: ndcg_at_10
|
1509 |
+
value: 17.09
|
1510 |
+
- type: ndcg_at_30
|
1511 |
+
value: 20.1
|
1512 |
+
- type: ndcg_at_100
|
1513 |
+
value: 26.33
|
1514 |
+
- type: map_at_1
|
1515 |
+
value: 2.15
|
1516 |
+
- type: map_at_3
|
1517 |
+
value: 3.59
|
1518 |
+
- type: map_at_5
|
1519 |
+
value: 5.07
|
1520 |
+
- type: map_at_10
|
1521 |
+
value: 6.95
|
1522 |
+
- type: map_at_30
|
1523 |
+
value: 9.01
|
1524 |
+
- type: map_at_100
|
1525 |
+
value: 10.54
|
1526 |
+
- type: recall_at_1
|
1527 |
+
value: 2.15
|
1528 |
+
- type: recall_at_3
|
1529 |
+
value: 4.5
|
1530 |
+
- type: recall_at_5
|
1531 |
+
value: 7.54
|
1532 |
+
- type: recall_at_10
|
1533 |
+
value: 12.46
|
1534 |
+
- type: recall_at_30
|
1535 |
+
value: 21.9
|
1536 |
+
- type: recall_at_100
|
1537 |
+
value: 36.58
|
1538 |
+
- type: precision_at_1
|
1539 |
+
value: 22.45
|
1540 |
+
- type: precision_at_3
|
1541 |
+
value: 19.05
|
1542 |
+
- type: precision_at_5
|
1543 |
+
value: 17.55
|
1544 |
+
- type: precision_at_10
|
1545 |
+
value: 15.51
|
1546 |
+
- type: precision_at_30
|
1547 |
+
value: 10.07
|
1548 |
+
- type: precision_at_100
|
1549 |
+
value: 5.57
|
1550 |
+
- type: accuracy_at_3
|
1551 |
+
value: 42.86
|
1552 |
+
- type: accuracy_at_5
|
1553 |
+
value: 53.06
|
1554 |
+
- type: accuracy_at_10
|
1555 |
+
value: 69.39
|
1556 |
+
---
|
1557 |
+
|
1558 |
+
# twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF
|
1559 |
+
This model was converted to GGUF format from [`mixedbread-ai/mxbai-embed-xsmall-v1`](https://huggingface.co/mixedbread-ai/mxbai-embed-xsmall-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
1560 |
+
Refer to the [original model card](https://huggingface.co/mixedbread-ai/mxbai-embed-xsmall-v1) for more details on the model.
|
1561 |
+
|
1562 |
+
## Use with llama.cpp
|
1563 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
1564 |
+
|
1565 |
+
```bash
|
1566 |
+
brew install llama.cpp
|
1567 |
+
|
1568 |
+
```
|
1569 |
+
Invoke the llama.cpp server or the CLI.
|
1570 |
+
|
1571 |
+
### CLI:
|
1572 |
+
```bash
|
1573 |
+
llama-cli --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -p "The meaning to life and the universe is"
|
1574 |
+
```
|
1575 |
+
|
1576 |
+
### Server:
|
1577 |
+
```bash
|
1578 |
+
llama-server --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -c 2048
|
1579 |
+
```
|
1580 |
+
|
1581 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
1582 |
+
|
1583 |
+
Step 1: Clone llama.cpp from GitHub.
|
1584 |
+
```
|
1585 |
+
git clone https://github.com/ggerganov/llama.cpp
|
1586 |
+
```
|
1587 |
+
|
1588 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
1589 |
+
```
|
1590 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
1591 |
+
```
|
1592 |
+
|
1593 |
+
Step 3: Run inference through the main binary.
|
1594 |
+
```
|
1595 |
+
./llama-cli --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -p "The meaning to life and the universe is"
|
1596 |
+
```
|
1597 |
+
or
|
1598 |
+
```
|
1599 |
+
./llama-server --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -c 2048
|
1600 |
+
```
|