twine-network commited on
Commit
104a400
1 Parent(s): e8bd5ab

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +1600 -0
README.md ADDED
@@ -0,0 +1,1600 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ - llama-cpp
5
+ - gguf-my-repo
6
+ base_model: mixedbread-ai/mxbai-embed-xsmall-v1
7
+ library_name: sentence-transformers
8
+ license: apache-2.0
9
+ language:
10
+ - en
11
+ pipeline_tag: feature-extraction
12
+ model-index:
13
+ - name: mxbai-embed-xsmall-v1
14
+ results:
15
+ - task:
16
+ type: Retrieval
17
+ dataset:
18
+ name: MTEB ArguAna
19
+ type: arguana
20
+ config: default
21
+ split: test
22
+ revision: None
23
+ metrics:
24
+ - type: ndcg_at_1
25
+ value: 25.18
26
+ - type: ndcg_at_3
27
+ value: 39.22
28
+ - type: ndcg_at_5
29
+ value: 43.93
30
+ - type: ndcg_at_10
31
+ value: 49.58
32
+ - type: ndcg_at_30
33
+ value: 53.41
34
+ - type: ndcg_at_100
35
+ value: 54.11
36
+ - type: map_at_1
37
+ value: 25.18
38
+ - type: map_at_3
39
+ value: 35.66
40
+ - type: map_at_5
41
+ value: 38.25
42
+ - type: map_at_10
43
+ value: 40.58
44
+ - type: map_at_30
45
+ value: 41.6
46
+ - type: map_at_100
47
+ value: 41.69
48
+ - type: recall_at_1
49
+ value: 25.18
50
+ - type: recall_at_3
51
+ value: 49.57
52
+ - type: recall_at_5
53
+ value: 61.09
54
+ - type: recall_at_10
55
+ value: 78.59
56
+ - type: recall_at_30
57
+ value: 94.03
58
+ - type: recall_at_100
59
+ value: 97.94
60
+ - type: precision_at_1
61
+ value: 25.18
62
+ - type: precision_at_3
63
+ value: 16.52
64
+ - type: precision_at_5
65
+ value: 12.22
66
+ - type: precision_at_10
67
+ value: 7.86
68
+ - type: precision_at_30
69
+ value: 3.13
70
+ - type: precision_at_100
71
+ value: 0.98
72
+ - type: accuracy_at_3
73
+ value: 49.57
74
+ - type: accuracy_at_5
75
+ value: 61.09
76
+ - type: accuracy_at_10
77
+ value: 78.59
78
+ - task:
79
+ type: Retrieval
80
+ dataset:
81
+ name: MTEB CQADupstackAndroidRetrieval
82
+ type: BeIR/cqadupstack
83
+ config: default
84
+ split: test
85
+ revision: None
86
+ metrics:
87
+ - type: ndcg_at_1
88
+ value: 44.35
89
+ - type: ndcg_at_3
90
+ value: 49.64
91
+ - type: ndcg_at_5
92
+ value: 51.73
93
+ - type: ndcg_at_10
94
+ value: 54.82
95
+ - type: ndcg_at_30
96
+ value: 57.64
97
+ - type: ndcg_at_100
98
+ value: 59.77
99
+ - type: map_at_1
100
+ value: 36.26
101
+ - type: map_at_3
102
+ value: 44.35
103
+ - type: map_at_5
104
+ value: 46.26
105
+ - type: map_at_10
106
+ value: 48.24
107
+ - type: map_at_30
108
+ value: 49.34
109
+ - type: map_at_100
110
+ value: 49.75
111
+ - type: recall_at_1
112
+ value: 36.26
113
+ - type: recall_at_3
114
+ value: 51.46
115
+ - type: recall_at_5
116
+ value: 57.78
117
+ - type: recall_at_10
118
+ value: 66.5
119
+ - type: recall_at_30
120
+ value: 77.19
121
+ - type: recall_at_100
122
+ value: 87.53
123
+ - type: precision_at_1
124
+ value: 44.35
125
+ - type: precision_at_3
126
+ value: 23.65
127
+ - type: precision_at_5
128
+ value: 16.88
129
+ - type: precision_at_10
130
+ value: 10.7
131
+ - type: precision_at_30
132
+ value: 4.53
133
+ - type: precision_at_100
134
+ value: 1.65
135
+ - type: accuracy_at_3
136
+ value: 60.51
137
+ - type: accuracy_at_5
138
+ value: 67.67
139
+ - type: accuracy_at_10
140
+ value: 74.68
141
+ - type: ndcg_at_1
142
+ value: 39.43
143
+ - type: ndcg_at_3
144
+ value: 44.13
145
+ - type: ndcg_at_5
146
+ value: 46.06
147
+ - type: ndcg_at_10
148
+ value: 48.31
149
+ - type: ndcg_at_30
150
+ value: 51.06
151
+ - type: ndcg_at_100
152
+ value: 53.07
153
+ - type: map_at_1
154
+ value: 31.27
155
+ - type: map_at_3
156
+ value: 39.07
157
+ - type: map_at_5
158
+ value: 40.83
159
+ - type: map_at_10
160
+ value: 42.23
161
+ - type: map_at_30
162
+ value: 43.27
163
+ - type: map_at_100
164
+ value: 43.66
165
+ - type: recall_at_1
166
+ value: 31.27
167
+ - type: recall_at_3
168
+ value: 45.89
169
+ - type: recall_at_5
170
+ value: 51.44
171
+ - type: recall_at_10
172
+ value: 58.65
173
+ - type: recall_at_30
174
+ value: 69.12
175
+ - type: recall_at_100
176
+ value: 78.72
177
+ - type: precision_at_1
178
+ value: 39.43
179
+ - type: precision_at_3
180
+ value: 21.61
181
+ - type: precision_at_5
182
+ value: 15.34
183
+ - type: precision_at_10
184
+ value: 9.27
185
+ - type: precision_at_30
186
+ value: 4.01
187
+ - type: precision_at_100
188
+ value: 1.52
189
+ - type: accuracy_at_3
190
+ value: 55.48
191
+ - type: accuracy_at_5
192
+ value: 60.76
193
+ - type: accuracy_at_10
194
+ value: 67.45
195
+ - type: ndcg_at_1
196
+ value: 45.58
197
+ - type: ndcg_at_3
198
+ value: 52.68
199
+ - type: ndcg_at_5
200
+ value: 55.28
201
+ - type: ndcg_at_10
202
+ value: 57.88
203
+ - type: ndcg_at_30
204
+ value: 60.6
205
+ - type: ndcg_at_100
206
+ value: 62.03
207
+ - type: map_at_1
208
+ value: 39.97
209
+ - type: map_at_3
210
+ value: 49.06
211
+ - type: map_at_5
212
+ value: 50.87
213
+ - type: map_at_10
214
+ value: 52.2
215
+ - type: map_at_30
216
+ value: 53.06
217
+ - type: map_at_100
218
+ value: 53.28
219
+ - type: recall_at_1
220
+ value: 39.97
221
+ - type: recall_at_3
222
+ value: 57.4
223
+ - type: recall_at_5
224
+ value: 63.83
225
+ - type: recall_at_10
226
+ value: 71.33
227
+ - type: recall_at_30
228
+ value: 81.81
229
+ - type: recall_at_100
230
+ value: 89.0
231
+ - type: precision_at_1
232
+ value: 45.58
233
+ - type: precision_at_3
234
+ value: 23.55
235
+ - type: precision_at_5
236
+ value: 16.01
237
+ - type: precision_at_10
238
+ value: 9.25
239
+ - type: precision_at_30
240
+ value: 3.67
241
+ - type: precision_at_100
242
+ value: 1.23
243
+ - type: accuracy_at_3
244
+ value: 62.76
245
+ - type: accuracy_at_5
246
+ value: 68.84
247
+ - type: accuracy_at_10
248
+ value: 75.8
249
+ - type: ndcg_at_1
250
+ value: 27.35
251
+ - type: ndcg_at_3
252
+ value: 34.23
253
+ - type: ndcg_at_5
254
+ value: 37.1
255
+ - type: ndcg_at_10
256
+ value: 40.26
257
+ - type: ndcg_at_30
258
+ value: 43.54
259
+ - type: ndcg_at_100
260
+ value: 45.9
261
+ - type: map_at_1
262
+ value: 25.28
263
+ - type: map_at_3
264
+ value: 31.68
265
+ - type: map_at_5
266
+ value: 33.38
267
+ - type: map_at_10
268
+ value: 34.79
269
+ - type: map_at_30
270
+ value: 35.67
271
+ - type: map_at_100
272
+ value: 35.96
273
+ - type: recall_at_1
274
+ value: 25.28
275
+ - type: recall_at_3
276
+ value: 38.95
277
+ - type: recall_at_5
278
+ value: 45.82
279
+ - type: recall_at_10
280
+ value: 55.11
281
+ - type: recall_at_30
282
+ value: 68.13
283
+ - type: recall_at_100
284
+ value: 80.88
285
+ - type: precision_at_1
286
+ value: 27.35
287
+ - type: precision_at_3
288
+ value: 14.65
289
+ - type: precision_at_5
290
+ value: 10.44
291
+ - type: precision_at_10
292
+ value: 6.37
293
+ - type: precision_at_30
294
+ value: 2.65
295
+ - type: precision_at_100
296
+ value: 0.97
297
+ - type: accuracy_at_3
298
+ value: 42.15
299
+ - type: accuracy_at_5
300
+ value: 49.15
301
+ - type: accuracy_at_10
302
+ value: 58.53
303
+ - type: ndcg_at_1
304
+ value: 18.91
305
+ - type: ndcg_at_3
306
+ value: 24.37
307
+ - type: ndcg_at_5
308
+ value: 26.11
309
+ - type: ndcg_at_10
310
+ value: 29.37
311
+ - type: ndcg_at_30
312
+ value: 33.22
313
+ - type: ndcg_at_100
314
+ value: 35.73
315
+ - type: map_at_1
316
+ value: 15.23
317
+ - type: map_at_3
318
+ value: 21.25
319
+ - type: map_at_5
320
+ value: 22.38
321
+ - type: map_at_10
322
+ value: 23.86
323
+ - type: map_at_30
324
+ value: 24.91
325
+ - type: map_at_100
326
+ value: 25.24
327
+ - type: recall_at_1
328
+ value: 15.23
329
+ - type: recall_at_3
330
+ value: 28.28
331
+ - type: recall_at_5
332
+ value: 32.67
333
+ - type: recall_at_10
334
+ value: 42.23
335
+ - type: recall_at_30
336
+ value: 56.87
337
+ - type: recall_at_100
338
+ value: 69.44
339
+ - type: precision_at_1
340
+ value: 18.91
341
+ - type: precision_at_3
342
+ value: 11.9
343
+ - type: precision_at_5
344
+ value: 8.48
345
+ - type: precision_at_10
346
+ value: 5.63
347
+ - type: precision_at_30
348
+ value: 2.64
349
+ - type: precision_at_100
350
+ value: 1.02
351
+ - type: accuracy_at_3
352
+ value: 33.95
353
+ - type: accuracy_at_5
354
+ value: 38.81
355
+ - type: accuracy_at_10
356
+ value: 49.13
357
+ - type: ndcg_at_1
358
+ value: 36.96
359
+ - type: ndcg_at_3
360
+ value: 42.48
361
+ - type: ndcg_at_5
362
+ value: 44.57
363
+ - type: ndcg_at_10
364
+ value: 47.13
365
+ - type: ndcg_at_30
366
+ value: 50.65
367
+ - type: ndcg_at_100
368
+ value: 53.14
369
+ - type: map_at_1
370
+ value: 30.1
371
+ - type: map_at_3
372
+ value: 37.97
373
+ - type: map_at_5
374
+ value: 39.62
375
+ - type: map_at_10
376
+ value: 41.06
377
+ - type: map_at_30
378
+ value: 42.13
379
+ - type: map_at_100
380
+ value: 42.53
381
+ - type: recall_at_1
382
+ value: 30.1
383
+ - type: recall_at_3
384
+ value: 45.98
385
+ - type: recall_at_5
386
+ value: 51.58
387
+ - type: recall_at_10
388
+ value: 59.24
389
+ - type: recall_at_30
390
+ value: 72.47
391
+ - type: recall_at_100
392
+ value: 84.53
393
+ - type: precision_at_1
394
+ value: 36.96
395
+ - type: precision_at_3
396
+ value: 20.5
397
+ - type: precision_at_5
398
+ value: 14.4
399
+ - type: precision_at_10
400
+ value: 8.62
401
+ - type: precision_at_30
402
+ value: 3.67
403
+ - type: precision_at_100
404
+ value: 1.38
405
+ - type: accuracy_at_3
406
+ value: 54.09
407
+ - type: accuracy_at_5
408
+ value: 60.25
409
+ - type: accuracy_at_10
410
+ value: 67.37
411
+ - type: ndcg_at_1
412
+ value: 28.65
413
+ - type: ndcg_at_3
414
+ value: 34.3
415
+ - type: ndcg_at_5
416
+ value: 36.8
417
+ - type: ndcg_at_10
418
+ value: 39.92
419
+ - type: ndcg_at_30
420
+ value: 42.97
421
+ - type: ndcg_at_100
422
+ value: 45.45
423
+ - type: map_at_1
424
+ value: 23.35
425
+ - type: map_at_3
426
+ value: 30.36
427
+ - type: map_at_5
428
+ value: 32.15
429
+ - type: map_at_10
430
+ value: 33.74
431
+ - type: map_at_30
432
+ value: 34.69
433
+ - type: map_at_100
434
+ value: 35.02
435
+ - type: recall_at_1
436
+ value: 23.35
437
+ - type: recall_at_3
438
+ value: 37.71
439
+ - type: recall_at_5
440
+ value: 44.23
441
+ - type: recall_at_10
442
+ value: 53.6
443
+ - type: recall_at_30
444
+ value: 64.69
445
+ - type: recall_at_100
446
+ value: 77.41
447
+ - type: precision_at_1
448
+ value: 28.65
449
+ - type: precision_at_3
450
+ value: 16.74
451
+ - type: precision_at_5
452
+ value: 12.21
453
+ - type: precision_at_10
454
+ value: 7.61
455
+ - type: precision_at_30
456
+ value: 3.29
457
+ - type: precision_at_100
458
+ value: 1.22
459
+ - type: accuracy_at_3
460
+ value: 44.86
461
+ - type: accuracy_at_5
462
+ value: 52.4
463
+ - type: accuracy_at_10
464
+ value: 61.07
465
+ - type: ndcg_at_1
466
+ value: 26.07
467
+ - type: ndcg_at_3
468
+ value: 31.62
469
+ - type: ndcg_at_5
470
+ value: 33.23
471
+ - type: ndcg_at_10
472
+ value: 35.62
473
+ - type: ndcg_at_30
474
+ value: 38.41
475
+ - type: ndcg_at_100
476
+ value: 40.81
477
+ - type: map_at_1
478
+ value: 22.96
479
+ - type: map_at_3
480
+ value: 28.85
481
+ - type: map_at_5
482
+ value: 29.97
483
+ - type: map_at_10
484
+ value: 31.11
485
+ - type: map_at_30
486
+ value: 31.86
487
+ - type: map_at_100
488
+ value: 32.15
489
+ - type: recall_at_1
490
+ value: 22.96
491
+ - type: recall_at_3
492
+ value: 35.14
493
+ - type: recall_at_5
494
+ value: 39.22
495
+ - type: recall_at_10
496
+ value: 46.52
497
+ - type: recall_at_30
498
+ value: 57.58
499
+ - type: recall_at_100
500
+ value: 70.57
501
+ - type: precision_at_1
502
+ value: 26.07
503
+ - type: precision_at_3
504
+ value: 14.11
505
+ - type: precision_at_5
506
+ value: 9.69
507
+ - type: precision_at_10
508
+ value: 5.81
509
+ - type: precision_at_30
510
+ value: 2.45
511
+ - type: precision_at_100
512
+ value: 0.92
513
+ - type: accuracy_at_3
514
+ value: 39.42
515
+ - type: accuracy_at_5
516
+ value: 43.41
517
+ - type: accuracy_at_10
518
+ value: 50.92
519
+ - type: ndcg_at_1
520
+ value: 21.78
521
+ - type: ndcg_at_3
522
+ value: 25.74
523
+ - type: ndcg_at_5
524
+ value: 27.86
525
+ - type: ndcg_at_10
526
+ value: 30.3
527
+ - type: ndcg_at_30
528
+ value: 33.51
529
+ - type: ndcg_at_100
530
+ value: 36.12
531
+ - type: map_at_1
532
+ value: 17.63
533
+ - type: map_at_3
534
+ value: 22.7
535
+ - type: map_at_5
536
+ value: 24.14
537
+ - type: map_at_10
538
+ value: 25.31
539
+ - type: map_at_30
540
+ value: 26.22
541
+ - type: map_at_100
542
+ value: 26.56
543
+ - type: recall_at_1
544
+ value: 17.63
545
+ - type: recall_at_3
546
+ value: 28.37
547
+ - type: recall_at_5
548
+ value: 33.99
549
+ - type: recall_at_10
550
+ value: 41.23
551
+ - type: recall_at_30
552
+ value: 53.69
553
+ - type: recall_at_100
554
+ value: 67.27
555
+ - type: precision_at_1
556
+ value: 21.78
557
+ - type: precision_at_3
558
+ value: 12.41
559
+ - type: precision_at_5
560
+ value: 9.07
561
+ - type: precision_at_10
562
+ value: 5.69
563
+ - type: precision_at_30
564
+ value: 2.61
565
+ - type: precision_at_100
566
+ value: 1.03
567
+ - type: accuracy_at_3
568
+ value: 33.62
569
+ - type: accuracy_at_5
570
+ value: 39.81
571
+ - type: accuracy_at_10
572
+ value: 47.32
573
+ - type: ndcg_at_1
574
+ value: 30.97
575
+ - type: ndcg_at_3
576
+ value: 36.13
577
+ - type: ndcg_at_5
578
+ value: 39.0
579
+ - type: ndcg_at_10
580
+ value: 41.78
581
+ - type: ndcg_at_30
582
+ value: 44.96
583
+ - type: ndcg_at_100
584
+ value: 47.52
585
+ - type: map_at_1
586
+ value: 26.05
587
+ - type: map_at_3
588
+ value: 32.77
589
+ - type: map_at_5
590
+ value: 34.6
591
+ - type: map_at_10
592
+ value: 35.93
593
+ - type: map_at_30
594
+ value: 36.88
595
+ - type: map_at_100
596
+ value: 37.22
597
+ - type: recall_at_1
598
+ value: 26.05
599
+ - type: recall_at_3
600
+ value: 40.0
601
+ - type: recall_at_5
602
+ value: 47.34
603
+ - type: recall_at_10
604
+ value: 55.34
605
+ - type: recall_at_30
606
+ value: 67.08
607
+ - type: recall_at_100
608
+ value: 80.2
609
+ - type: precision_at_1
610
+ value: 30.97
611
+ - type: precision_at_3
612
+ value: 16.6
613
+ - type: precision_at_5
614
+ value: 12.03
615
+ - type: precision_at_10
616
+ value: 7.3
617
+ - type: precision_at_30
618
+ value: 3.08
619
+ - type: precision_at_100
620
+ value: 1.15
621
+ - type: accuracy_at_3
622
+ value: 45.62
623
+ - type: accuracy_at_5
624
+ value: 53.64
625
+ - type: accuracy_at_10
626
+ value: 61.66
627
+ - type: ndcg_at_1
628
+ value: 29.64
629
+ - type: ndcg_at_3
630
+ value: 35.49
631
+ - type: ndcg_at_5
632
+ value: 37.77
633
+ - type: ndcg_at_10
634
+ value: 40.78
635
+ - type: ndcg_at_30
636
+ value: 44.59
637
+ - type: ndcg_at_100
638
+ value: 46.97
639
+ - type: map_at_1
640
+ value: 24.77
641
+ - type: map_at_3
642
+ value: 31.33
643
+ - type: map_at_5
644
+ value: 32.95
645
+ - type: map_at_10
646
+ value: 34.47
647
+ - type: map_at_30
648
+ value: 35.7
649
+ - type: map_at_100
650
+ value: 36.17
651
+ - type: recall_at_1
652
+ value: 24.77
653
+ - type: recall_at_3
654
+ value: 38.16
655
+ - type: recall_at_5
656
+ value: 44.1
657
+ - type: recall_at_10
658
+ value: 53.31
659
+ - type: recall_at_30
660
+ value: 68.43
661
+ - type: recall_at_100
662
+ value: 80.24
663
+ - type: precision_at_1
664
+ value: 29.64
665
+ - type: precision_at_3
666
+ value: 16.8
667
+ - type: precision_at_5
668
+ value: 12.21
669
+ - type: precision_at_10
670
+ value: 7.83
671
+ - type: precision_at_30
672
+ value: 3.89
673
+ - type: precision_at_100
674
+ value: 1.63
675
+ - type: accuracy_at_3
676
+ value: 45.45
677
+ - type: accuracy_at_5
678
+ value: 51.58
679
+ - type: accuracy_at_10
680
+ value: 61.07
681
+ - type: ndcg_at_1
682
+ value: 23.47
683
+ - type: ndcg_at_3
684
+ value: 27.98
685
+ - type: ndcg_at_5
686
+ value: 30.16
687
+ - type: ndcg_at_10
688
+ value: 32.97
689
+ - type: ndcg_at_30
690
+ value: 36.3
691
+ - type: ndcg_at_100
692
+ value: 38.47
693
+ - type: map_at_1
694
+ value: 21.63
695
+ - type: map_at_3
696
+ value: 26.02
697
+ - type: map_at_5
698
+ value: 27.32
699
+ - type: map_at_10
700
+ value: 28.51
701
+ - type: map_at_30
702
+ value: 29.39
703
+ - type: map_at_100
704
+ value: 29.66
705
+ - type: recall_at_1
706
+ value: 21.63
707
+ - type: recall_at_3
708
+ value: 31.47
709
+ - type: recall_at_5
710
+ value: 36.69
711
+ - type: recall_at_10
712
+ value: 44.95
713
+ - type: recall_at_30
714
+ value: 58.2
715
+ - type: recall_at_100
716
+ value: 69.83
717
+ - type: precision_at_1
718
+ value: 23.47
719
+ - type: precision_at_3
720
+ value: 11.71
721
+ - type: precision_at_5
722
+ value: 8.32
723
+ - type: precision_at_10
724
+ value: 5.23
725
+ - type: precision_at_30
726
+ value: 2.29
727
+ - type: precision_at_100
728
+ value: 0.86
729
+ - type: accuracy_at_3
730
+ value: 34.01
731
+ - type: accuracy_at_5
732
+ value: 39.37
733
+ - type: accuracy_at_10
734
+ value: 48.24
735
+ - type: ndcg_at_10
736
+ value: 41.59
737
+ - task:
738
+ type: Retrieval
739
+ dataset:
740
+ name: MTEB ClimateFEVER
741
+ type: climate-fever
742
+ config: default
743
+ split: test
744
+ revision: None
745
+ metrics:
746
+ - type: ndcg_at_1
747
+ value: 19.8
748
+ - type: ndcg_at_3
749
+ value: 17.93
750
+ - type: ndcg_at_5
751
+ value: 19.39
752
+ - type: ndcg_at_10
753
+ value: 22.42
754
+ - type: ndcg_at_30
755
+ value: 26.79
756
+ - type: ndcg_at_100
757
+ value: 29.84
758
+ - type: map_at_1
759
+ value: 9.09
760
+ - type: map_at_3
761
+ value: 12.91
762
+ - type: map_at_5
763
+ value: 14.12
764
+ - type: map_at_10
765
+ value: 15.45
766
+ - type: map_at_30
767
+ value: 16.73
768
+ - type: map_at_100
769
+ value: 17.21
770
+ - type: recall_at_1
771
+ value: 9.09
772
+ - type: recall_at_3
773
+ value: 16.81
774
+ - type: recall_at_5
775
+ value: 20.9
776
+ - type: recall_at_10
777
+ value: 27.65
778
+ - type: recall_at_30
779
+ value: 41.23
780
+ - type: recall_at_100
781
+ value: 53.57
782
+ - type: precision_at_1
783
+ value: 19.8
784
+ - type: precision_at_3
785
+ value: 13.36
786
+ - type: precision_at_5
787
+ value: 10.33
788
+ - type: precision_at_10
789
+ value: 7.15
790
+ - type: precision_at_30
791
+ value: 3.66
792
+ - type: precision_at_100
793
+ value: 1.49
794
+ - type: accuracy_at_3
795
+ value: 36.22
796
+ - type: accuracy_at_5
797
+ value: 44.1
798
+ - type: accuracy_at_10
799
+ value: 55.11
800
+ - task:
801
+ type: Retrieval
802
+ dataset:
803
+ name: MTEB DBPedia
804
+ type: dbpedia-entity
805
+ config: default
806
+ split: test
807
+ revision: None
808
+ metrics:
809
+ - type: ndcg_at_1
810
+ value: 42.75
811
+ - type: ndcg_at_3
812
+ value: 35.67
813
+ - type: ndcg_at_5
814
+ value: 33.58
815
+ - type: ndcg_at_10
816
+ value: 32.19
817
+ - type: ndcg_at_30
818
+ value: 31.82
819
+ - type: ndcg_at_100
820
+ value: 35.87
821
+ - type: map_at_1
822
+ value: 7.05
823
+ - type: map_at_3
824
+ value: 10.5
825
+ - type: map_at_5
826
+ value: 12.06
827
+ - type: map_at_10
828
+ value: 14.29
829
+ - type: map_at_30
830
+ value: 17.38
831
+ - type: map_at_100
832
+ value: 19.58
833
+ - type: recall_at_1
834
+ value: 7.05
835
+ - type: recall_at_3
836
+ value: 11.89
837
+ - type: recall_at_5
838
+ value: 14.7
839
+ - type: recall_at_10
840
+ value: 19.78
841
+ - type: recall_at_30
842
+ value: 29.88
843
+ - type: recall_at_100
844
+ value: 42.4
845
+ - type: precision_at_1
846
+ value: 54.25
847
+ - type: precision_at_3
848
+ value: 39.42
849
+ - type: precision_at_5
850
+ value: 33.15
851
+ - type: precision_at_10
852
+ value: 25.95
853
+ - type: precision_at_30
854
+ value: 15.51
855
+ - type: precision_at_100
856
+ value: 7.9
857
+ - type: accuracy_at_3
858
+ value: 72.0
859
+ - type: accuracy_at_5
860
+ value: 77.75
861
+ - type: accuracy_at_10
862
+ value: 83.5
863
+ - task:
864
+ type: Retrieval
865
+ dataset:
866
+ name: MTEB FEVER
867
+ type: fever
868
+ config: default
869
+ split: test
870
+ revision: None
871
+ metrics:
872
+ - type: ndcg_at_1
873
+ value: 40.19
874
+ - type: ndcg_at_3
875
+ value: 50.51
876
+ - type: ndcg_at_5
877
+ value: 53.51
878
+ - type: ndcg_at_10
879
+ value: 56.45
880
+ - type: ndcg_at_30
881
+ value: 58.74
882
+ - type: ndcg_at_100
883
+ value: 59.72
884
+ - type: map_at_1
885
+ value: 37.56
886
+ - type: map_at_3
887
+ value: 46.74
888
+ - type: map_at_5
889
+ value: 48.46
890
+ - type: map_at_10
891
+ value: 49.7
892
+ - type: map_at_30
893
+ value: 50.31
894
+ - type: map_at_100
895
+ value: 50.43
896
+ - type: recall_at_1
897
+ value: 37.56
898
+ - type: recall_at_3
899
+ value: 58.28
900
+ - type: recall_at_5
901
+ value: 65.45
902
+ - type: recall_at_10
903
+ value: 74.28
904
+ - type: recall_at_30
905
+ value: 83.42
906
+ - type: recall_at_100
907
+ value: 88.76
908
+ - type: precision_at_1
909
+ value: 40.19
910
+ - type: precision_at_3
911
+ value: 20.99
912
+ - type: precision_at_5
913
+ value: 14.24
914
+ - type: precision_at_10
915
+ value: 8.12
916
+ - type: precision_at_30
917
+ value: 3.06
918
+ - type: precision_at_100
919
+ value: 0.98
920
+ - type: accuracy_at_3
921
+ value: 62.3
922
+ - type: accuracy_at_5
923
+ value: 69.94
924
+ - type: accuracy_at_10
925
+ value: 79.13
926
+ - task:
927
+ type: Retrieval
928
+ dataset:
929
+ name: MTEB FiQA2018
930
+ type: fiqa
931
+ config: default
932
+ split: test
933
+ revision: None
934
+ metrics:
935
+ - type: ndcg_at_1
936
+ value: 34.41
937
+ - type: ndcg_at_3
938
+ value: 33.2
939
+ - type: ndcg_at_5
940
+ value: 34.71
941
+ - type: ndcg_at_10
942
+ value: 37.1
943
+ - type: ndcg_at_30
944
+ value: 40.88
945
+ - type: ndcg_at_100
946
+ value: 44.12
947
+ - type: map_at_1
948
+ value: 17.27
949
+ - type: map_at_3
950
+ value: 25.36
951
+ - type: map_at_5
952
+ value: 27.76
953
+ - type: map_at_10
954
+ value: 29.46
955
+ - type: map_at_30
956
+ value: 30.74
957
+ - type: map_at_100
958
+ value: 31.29
959
+ - type: recall_at_1
960
+ value: 17.27
961
+ - type: recall_at_3
962
+ value: 30.46
963
+ - type: recall_at_5
964
+ value: 36.91
965
+ - type: recall_at_10
966
+ value: 44.47
967
+ - type: recall_at_30
968
+ value: 56.71
969
+ - type: recall_at_100
970
+ value: 70.72
971
+ - type: precision_at_1
972
+ value: 34.41
973
+ - type: precision_at_3
974
+ value: 22.32
975
+ - type: precision_at_5
976
+ value: 16.91
977
+ - type: precision_at_10
978
+ value: 10.53
979
+ - type: precision_at_30
980
+ value: 4.62
981
+ - type: precision_at_100
982
+ value: 1.79
983
+ - type: accuracy_at_3
984
+ value: 50.77
985
+ - type: accuracy_at_5
986
+ value: 57.56
987
+ - type: accuracy_at_10
988
+ value: 65.12
989
+ - task:
990
+ type: Retrieval
991
+ dataset:
992
+ name: MTEB HotpotQA
993
+ type: hotpotqa
994
+ config: default
995
+ split: test
996
+ revision: None
997
+ metrics:
998
+ - type: ndcg_at_1
999
+ value: 57.93
1000
+ - type: ndcg_at_3
1001
+ value: 44.21
1002
+ - type: ndcg_at_5
1003
+ value: 46.4
1004
+ - type: ndcg_at_10
1005
+ value: 48.37
1006
+ - type: ndcg_at_30
1007
+ value: 50.44
1008
+ - type: ndcg_at_100
1009
+ value: 51.86
1010
+ - type: map_at_1
1011
+ value: 28.97
1012
+ - type: map_at_3
1013
+ value: 36.79
1014
+ - type: map_at_5
1015
+ value: 38.31
1016
+ - type: map_at_10
1017
+ value: 39.32
1018
+ - type: map_at_30
1019
+ value: 39.99
1020
+ - type: map_at_100
1021
+ value: 40.2
1022
+ - type: recall_at_1
1023
+ value: 28.97
1024
+ - type: recall_at_3
1025
+ value: 41.01
1026
+ - type: recall_at_5
1027
+ value: 45.36
1028
+ - type: recall_at_10
1029
+ value: 50.32
1030
+ - type: recall_at_30
1031
+ value: 57.38
1032
+ - type: recall_at_100
1033
+ value: 64.06
1034
+ - type: precision_at_1
1035
+ value: 57.93
1036
+ - type: precision_at_3
1037
+ value: 27.34
1038
+ - type: precision_at_5
1039
+ value: 18.14
1040
+ - type: precision_at_10
1041
+ value: 10.06
1042
+ - type: precision_at_30
1043
+ value: 3.82
1044
+ - type: precision_at_100
1045
+ value: 1.28
1046
+ - type: accuracy_at_3
1047
+ value: 71.03
1048
+ - type: accuracy_at_5
1049
+ value: 75.14
1050
+ - type: accuracy_at_10
1051
+ value: 79.84
1052
+ - task:
1053
+ type: Retrieval
1054
+ dataset:
1055
+ name: MTEB MSMARCO
1056
+ type: msmarco
1057
+ config: default
1058
+ split: dev
1059
+ revision: None
1060
+ metrics:
1061
+ - type: ndcg_at_1
1062
+ value: 19.74
1063
+ - type: ndcg_at_3
1064
+ value: 29.47
1065
+ - type: ndcg_at_5
1066
+ value: 32.99
1067
+ - type: ndcg_at_10
1068
+ value: 36.76
1069
+ - type: ndcg_at_30
1070
+ value: 40.52
1071
+ - type: ndcg_at_100
1072
+ value: 42.78
1073
+ - type: map_at_1
1074
+ value: 19.2
1075
+ - type: map_at_3
1076
+ value: 26.81
1077
+ - type: map_at_5
1078
+ value: 28.78
1079
+ - type: map_at_10
1080
+ value: 30.35
1081
+ - type: map_at_30
1082
+ value: 31.3
1083
+ - type: map_at_100
1084
+ value: 31.57
1085
+ - type: recall_at_1
1086
+ value: 19.2
1087
+ - type: recall_at_3
1088
+ value: 36.59
1089
+ - type: recall_at_5
1090
+ value: 45.08
1091
+ - type: recall_at_10
1092
+ value: 56.54
1093
+ - type: recall_at_30
1094
+ value: 72.05
1095
+ - type: recall_at_100
1096
+ value: 84.73
1097
+ - type: precision_at_1
1098
+ value: 19.74
1099
+ - type: precision_at_3
1100
+ value: 12.61
1101
+ - type: precision_at_5
1102
+ value: 9.37
1103
+ - type: precision_at_10
1104
+ value: 5.89
1105
+ - type: precision_at_30
1106
+ value: 2.52
1107
+ - type: precision_at_100
1108
+ value: 0.89
1109
+ - type: accuracy_at_3
1110
+ value: 37.38
1111
+ - type: accuracy_at_5
1112
+ value: 46.06
1113
+ - type: accuracy_at_10
1114
+ value: 57.62
1115
+ - task:
1116
+ type: Retrieval
1117
+ dataset:
1118
+ name: MTEB NQ
1119
+ type: nq
1120
+ config: default
1121
+ split: test
1122
+ revision: None
1123
+ metrics:
1124
+ - type: ndcg_at_1
1125
+ value: 25.9
1126
+ - type: ndcg_at_3
1127
+ value: 35.97
1128
+ - type: ndcg_at_5
1129
+ value: 40.27
1130
+ - type: ndcg_at_10
1131
+ value: 44.44
1132
+ - type: ndcg_at_30
1133
+ value: 48.31
1134
+ - type: ndcg_at_100
1135
+ value: 50.14
1136
+ - type: map_at_1
1137
+ value: 23.03
1138
+ - type: map_at_3
1139
+ value: 32.45
1140
+ - type: map_at_5
1141
+ value: 34.99
1142
+ - type: map_at_10
1143
+ value: 36.84
1144
+ - type: map_at_30
1145
+ value: 37.92
1146
+ - type: map_at_100
1147
+ value: 38.16
1148
+ - type: recall_at_1
1149
+ value: 23.03
1150
+ - type: recall_at_3
1151
+ value: 43.49
1152
+ - type: recall_at_5
1153
+ value: 53.41
1154
+ - type: recall_at_10
1155
+ value: 65.65
1156
+ - type: recall_at_30
1157
+ value: 80.79
1158
+ - type: recall_at_100
1159
+ value: 90.59
1160
+ - type: precision_at_1
1161
+ value: 25.9
1162
+ - type: precision_at_3
1163
+ value: 16.76
1164
+ - type: precision_at_5
1165
+ value: 12.54
1166
+ - type: precision_at_10
1167
+ value: 7.78
1168
+ - type: precision_at_30
1169
+ value: 3.23
1170
+ - type: precision_at_100
1171
+ value: 1.1
1172
+ - type: accuracy_at_3
1173
+ value: 47.31
1174
+ - type: accuracy_at_5
1175
+ value: 57.16
1176
+ - type: accuracy_at_10
1177
+ value: 69.09
1178
+ - task:
1179
+ type: Retrieval
1180
+ dataset:
1181
+ name: MTEB NFCorpus
1182
+ type: nfcorpus
1183
+ config: default
1184
+ split: test
1185
+ revision: None
1186
+ metrics:
1187
+ - type: ndcg_at_1
1188
+ value: 40.87
1189
+ - type: ndcg_at_3
1190
+ value: 36.79
1191
+ - type: ndcg_at_5
1192
+ value: 34.47
1193
+ - type: ndcg_at_10
1194
+ value: 32.05
1195
+ - type: ndcg_at_30
1196
+ value: 29.23
1197
+ - type: ndcg_at_100
1198
+ value: 29.84
1199
+ - type: map_at_1
1200
+ value: 5.05
1201
+ - type: map_at_3
1202
+ value: 8.5
1203
+ - type: map_at_5
1204
+ value: 9.87
1205
+ - type: map_at_10
1206
+ value: 11.71
1207
+ - type: map_at_30
1208
+ value: 13.48
1209
+ - type: map_at_100
1210
+ value: 14.86
1211
+ - type: recall_at_1
1212
+ value: 5.05
1213
+ - type: recall_at_3
1214
+ value: 9.55
1215
+ - type: recall_at_5
1216
+ value: 11.91
1217
+ - type: recall_at_10
1218
+ value: 16.07
1219
+ - type: recall_at_30
1220
+ value: 22.13
1221
+ - type: recall_at_100
1222
+ value: 30.7
1223
+ - type: precision_at_1
1224
+ value: 42.72
1225
+ - type: precision_at_3
1226
+ value: 34.78
1227
+ - type: precision_at_5
1228
+ value: 30.03
1229
+ - type: precision_at_10
1230
+ value: 23.93
1231
+ - type: precision_at_30
1232
+ value: 14.61
1233
+ - type: precision_at_100
1234
+ value: 7.85
1235
+ - type: accuracy_at_3
1236
+ value: 58.2
1237
+ - type: accuracy_at_5
1238
+ value: 64.09
1239
+ - type: accuracy_at_10
1240
+ value: 69.35
1241
+ - task:
1242
+ type: Retrieval
1243
+ dataset:
1244
+ name: MTEB QuoraRetrieval
1245
+ type: quora
1246
+ config: default
1247
+ split: test
1248
+ revision: None
1249
+ metrics:
1250
+ - type: ndcg_at_1
1251
+ value: 80.62
1252
+ - type: ndcg_at_3
1253
+ value: 84.62
1254
+ - type: ndcg_at_5
1255
+ value: 86.25
1256
+ - type: ndcg_at_10
1257
+ value: 87.7
1258
+ - type: ndcg_at_30
1259
+ value: 88.63
1260
+ - type: ndcg_at_100
1261
+ value: 88.95
1262
+ - type: map_at_1
1263
+ value: 69.91
1264
+ - type: map_at_3
1265
+ value: 80.7
1266
+ - type: map_at_5
1267
+ value: 82.57
1268
+ - type: map_at_10
1269
+ value: 83.78
1270
+ - type: map_at_30
1271
+ value: 84.33
1272
+ - type: map_at_100
1273
+ value: 84.44
1274
+ - type: recall_at_1
1275
+ value: 69.91
1276
+ - type: recall_at_3
1277
+ value: 86.36
1278
+ - type: recall_at_5
1279
+ value: 90.99
1280
+ - type: recall_at_10
1281
+ value: 95.19
1282
+ - type: recall_at_30
1283
+ value: 98.25
1284
+ - type: recall_at_100
1285
+ value: 99.47
1286
+ - type: precision_at_1
1287
+ value: 80.62
1288
+ - type: precision_at_3
1289
+ value: 37.03
1290
+ - type: precision_at_5
1291
+ value: 24.36
1292
+ - type: precision_at_10
1293
+ value: 13.4
1294
+ - type: precision_at_30
1295
+ value: 4.87
1296
+ - type: precision_at_100
1297
+ value: 1.53
1298
+ - type: accuracy_at_3
1299
+ value: 92.25
1300
+ - type: accuracy_at_5
1301
+ value: 95.29
1302
+ - type: accuracy_at_10
1303
+ value: 97.74
1304
+ - task:
1305
+ type: Retrieval
1306
+ dataset:
1307
+ name: MTEB SCIDOCS
1308
+ type: scidocs
1309
+ config: default
1310
+ split: test
1311
+ revision: None
1312
+ metrics:
1313
+ - type: ndcg_at_1
1314
+ value: 24.1
1315
+ - type: ndcg_at_3
1316
+ value: 20.18
1317
+ - type: ndcg_at_5
1318
+ value: 17.72
1319
+ - type: ndcg_at_10
1320
+ value: 21.5
1321
+ - type: ndcg_at_30
1322
+ value: 26.66
1323
+ - type: ndcg_at_100
1324
+ value: 30.95
1325
+ - type: map_at_1
1326
+ value: 4.88
1327
+ - type: map_at_3
1328
+ value: 9.09
1329
+ - type: map_at_5
1330
+ value: 10.99
1331
+ - type: map_at_10
1332
+ value: 12.93
1333
+ - type: map_at_30
1334
+ value: 14.71
1335
+ - type: map_at_100
1336
+ value: 15.49
1337
+ - type: recall_at_1
1338
+ value: 4.88
1339
+ - type: recall_at_3
1340
+ value: 11.55
1341
+ - type: recall_at_5
1342
+ value: 15.91
1343
+ - type: recall_at_10
1344
+ value: 22.82
1345
+ - type: recall_at_30
1346
+ value: 35.7
1347
+ - type: recall_at_100
1348
+ value: 50.41
1349
+ - type: precision_at_1
1350
+ value: 24.1
1351
+ - type: precision_at_3
1352
+ value: 19.0
1353
+ - type: precision_at_5
1354
+ value: 15.72
1355
+ - type: precision_at_10
1356
+ value: 11.27
1357
+ - type: precision_at_30
1358
+ value: 5.87
1359
+ - type: precision_at_100
1360
+ value: 2.49
1361
+ - type: accuracy_at_3
1362
+ value: 43.0
1363
+ - type: accuracy_at_5
1364
+ value: 51.6
1365
+ - type: accuracy_at_10
1366
+ value: 62.7
1367
+ - task:
1368
+ type: Retrieval
1369
+ dataset:
1370
+ name: MTEB SciFact
1371
+ type: scifact
1372
+ config: default
1373
+ split: test
1374
+ revision: None
1375
+ metrics:
1376
+ - type: ndcg_at_1
1377
+ value: 52.33
1378
+ - type: ndcg_at_3
1379
+ value: 61.47
1380
+ - type: ndcg_at_5
1381
+ value: 63.82
1382
+ - type: ndcg_at_10
1383
+ value: 65.81
1384
+ - type: ndcg_at_30
1385
+ value: 67.75
1386
+ - type: ndcg_at_100
1387
+ value: 68.96
1388
+ - type: map_at_1
1389
+ value: 50.46
1390
+ - type: map_at_3
1391
+ value: 58.51
1392
+ - type: map_at_5
1393
+ value: 60.12
1394
+ - type: map_at_10
1395
+ value: 61.07
1396
+ - type: map_at_30
1397
+ value: 61.64
1398
+ - type: map_at_100
1399
+ value: 61.8
1400
+ - type: recall_at_1
1401
+ value: 50.46
1402
+ - type: recall_at_3
1403
+ value: 67.81
1404
+ - type: recall_at_5
1405
+ value: 73.6
1406
+ - type: recall_at_10
1407
+ value: 79.31
1408
+ - type: recall_at_30
1409
+ value: 86.8
1410
+ - type: recall_at_100
1411
+ value: 93.5
1412
+ - type: precision_at_1
1413
+ value: 52.33
1414
+ - type: precision_at_3
1415
+ value: 24.56
1416
+ - type: precision_at_5
1417
+ value: 16.27
1418
+ - type: precision_at_10
1419
+ value: 8.9
1420
+ - type: precision_at_30
1421
+ value: 3.28
1422
+ - type: precision_at_100
1423
+ value: 1.06
1424
+ - type: accuracy_at_3
1425
+ value: 69.67
1426
+ - type: accuracy_at_5
1427
+ value: 75.0
1428
+ - type: accuracy_at_10
1429
+ value: 80.67
1430
+ - task:
1431
+ type: Retrieval
1432
+ dataset:
1433
+ name: MTEB TRECCOVID
1434
+ type: trec-covid
1435
+ config: default
1436
+ split: test
1437
+ revision: None
1438
+ metrics:
1439
+ - type: ndcg_at_1
1440
+ value: 57.0
1441
+ - type: ndcg_at_3
1442
+ value: 53.78
1443
+ - type: ndcg_at_5
1444
+ value: 52.62
1445
+ - type: ndcg_at_10
1446
+ value: 48.9
1447
+ - type: ndcg_at_30
1448
+ value: 44.2
1449
+ - type: ndcg_at_100
1450
+ value: 36.53
1451
+ - type: map_at_1
1452
+ value: 0.16
1453
+ - type: map_at_3
1454
+ value: 0.41
1455
+ - type: map_at_5
1456
+ value: 0.62
1457
+ - type: map_at_10
1458
+ value: 1.07
1459
+ - type: map_at_30
1460
+ value: 2.46
1461
+ - type: map_at_100
1462
+ value: 5.52
1463
+ - type: recall_at_1
1464
+ value: 0.16
1465
+ - type: recall_at_3
1466
+ value: 0.45
1467
+ - type: recall_at_5
1468
+ value: 0.72
1469
+ - type: recall_at_10
1470
+ value: 1.33
1471
+ - type: recall_at_30
1472
+ value: 3.46
1473
+ - type: recall_at_100
1474
+ value: 8.73
1475
+ - type: precision_at_1
1476
+ value: 62.0
1477
+ - type: precision_at_3
1478
+ value: 57.33
1479
+ - type: precision_at_5
1480
+ value: 56.0
1481
+ - type: precision_at_10
1482
+ value: 52.0
1483
+ - type: precision_at_30
1484
+ value: 46.2
1485
+ - type: precision_at_100
1486
+ value: 37.22
1487
+ - type: accuracy_at_3
1488
+ value: 82.0
1489
+ - type: accuracy_at_5
1490
+ value: 90.0
1491
+ - type: accuracy_at_10
1492
+ value: 92.0
1493
+ - task:
1494
+ type: Retrieval
1495
+ dataset:
1496
+ name: MTEB Touche2020
1497
+ type: webis-touche2020
1498
+ config: default
1499
+ split: test
1500
+ revision: None
1501
+ metrics:
1502
+ - type: ndcg_at_1
1503
+ value: 20.41
1504
+ - type: ndcg_at_3
1505
+ value: 17.62
1506
+ - type: ndcg_at_5
1507
+ value: 17.16
1508
+ - type: ndcg_at_10
1509
+ value: 17.09
1510
+ - type: ndcg_at_30
1511
+ value: 20.1
1512
+ - type: ndcg_at_100
1513
+ value: 26.33
1514
+ - type: map_at_1
1515
+ value: 2.15
1516
+ - type: map_at_3
1517
+ value: 3.59
1518
+ - type: map_at_5
1519
+ value: 5.07
1520
+ - type: map_at_10
1521
+ value: 6.95
1522
+ - type: map_at_30
1523
+ value: 9.01
1524
+ - type: map_at_100
1525
+ value: 10.54
1526
+ - type: recall_at_1
1527
+ value: 2.15
1528
+ - type: recall_at_3
1529
+ value: 4.5
1530
+ - type: recall_at_5
1531
+ value: 7.54
1532
+ - type: recall_at_10
1533
+ value: 12.46
1534
+ - type: recall_at_30
1535
+ value: 21.9
1536
+ - type: recall_at_100
1537
+ value: 36.58
1538
+ - type: precision_at_1
1539
+ value: 22.45
1540
+ - type: precision_at_3
1541
+ value: 19.05
1542
+ - type: precision_at_5
1543
+ value: 17.55
1544
+ - type: precision_at_10
1545
+ value: 15.51
1546
+ - type: precision_at_30
1547
+ value: 10.07
1548
+ - type: precision_at_100
1549
+ value: 5.57
1550
+ - type: accuracy_at_3
1551
+ value: 42.86
1552
+ - type: accuracy_at_5
1553
+ value: 53.06
1554
+ - type: accuracy_at_10
1555
+ value: 69.39
1556
+ ---
1557
+
1558
+ # twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF
1559
+ This model was converted to GGUF format from [`mixedbread-ai/mxbai-embed-xsmall-v1`](https://huggingface.co/mixedbread-ai/mxbai-embed-xsmall-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
1560
+ Refer to the [original model card](https://huggingface.co/mixedbread-ai/mxbai-embed-xsmall-v1) for more details on the model.
1561
+
1562
+ ## Use with llama.cpp
1563
+ Install llama.cpp through brew (works on Mac and Linux)
1564
+
1565
+ ```bash
1566
+ brew install llama.cpp
1567
+
1568
+ ```
1569
+ Invoke the llama.cpp server or the CLI.
1570
+
1571
+ ### CLI:
1572
+ ```bash
1573
+ llama-cli --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -p "The meaning to life and the universe is"
1574
+ ```
1575
+
1576
+ ### Server:
1577
+ ```bash
1578
+ llama-server --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -c 2048
1579
+ ```
1580
+
1581
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
1582
+
1583
+ Step 1: Clone llama.cpp from GitHub.
1584
+ ```
1585
+ git clone https://github.com/ggerganov/llama.cpp
1586
+ ```
1587
+
1588
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
1589
+ ```
1590
+ cd llama.cpp && LLAMA_CURL=1 make
1591
+ ```
1592
+
1593
+ Step 3: Run inference through the main binary.
1594
+ ```
1595
+ ./llama-cli --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -p "The meaning to life and the universe is"
1596
+ ```
1597
+ or
1598
+ ```
1599
+ ./llama-server --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -c 2048
1600
+ ```