Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +15 -15
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -2.
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.78 +/- 1.62
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ed25db6c3d9bc3c08d82b94715f45aa7b2e824565cb53a2a8e4eee6ae7cdf64
|
3 |
+
size 108061
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,12 +19,12 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,36 +33,36 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
43 |
-
":serialized:": "
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
"use_sde": false,
|
54 |
"sde_sample_freq": -1,
|
55 |
-
"_current_progress_remaining": 0.
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe60913a700>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe609139a00>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 337680,
|
23 |
+
"_total_timesteps": 2000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1673899159075181639,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhW9LPlHktz+YRzG+4xAzv1cpdj+4TsS+jrO1vtolGj9tdOg/Okugv6GBuD+OS+c+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6NONP+G9yj95Ptm+jd+nv5TVUT8rPr++VFCnP965TT+PGdk/9xHKv21ysz8FEO8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFb0s+UeS3P5hHMb6in9G8vn59u0lTkLvjEDO/Vyl2P7hOxL4v+o29mFRguxslI76Os7W+2iUaP2106D9+iYA9gB9SvZMiqDs6S6C/oYG4P45L5z4uzUW9l+iWPRB0jL2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.1986676 1.4366552 -0.17312467]\n [-0.6994764 0.9615683 -0.38341308]\n [-0.35488552 0.60214007 1.816053 ]\n [-1.2522957 1.441456 0.4517483 ]]",
|
38 |
+
"desired_goal": "[[ 1.1080294 1.5839196 -0.42430475]\n [-1.3115097 0.8196652 -0.37352118]\n [ 1.3071389 0.80361736 1.6960925 ]\n [-1.5786732 1.4019295 0.4669191 ]]",
|
39 |
+
"observation": "[[ 0.1986676 1.4366552 -0.17312467 -0.02558881 -0.00386803 -0.00440446]\n [-0.6994764 0.9615683 -0.38341308 -0.06932484 -0.00342301 -0.15932123]\n [-0.35488552 0.60214007 1.816053 0.06276225 -0.05129957 0.00513107]\n [-1.2522957 1.441456 0.4517483 -0.04829138 0.07368582 -0.06858075]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfkmsveOqFj7OX1w+i1fkPZPYWj1XvEg+eYLdvBgYH71BDnc82h8BPiL6DT5rCCI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.08412455 0.14713626 0.21520922]\n [ 0.1114951 0.0534292 0.19603096]\n [-0.02703975 -0.03884134 0.01507908]\n [ 0.12609807 0.1386495 0.15823524]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
"use_sde": false,
|
54 |
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.83116,
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBf2FHjE6B8CUhpRSlIwBbJRLMowBdJRHQIoMsijcmBx1fZQoaAZoCWgPQwhT7Ggc6jf5v5SGlFKUaBVLMmgWR0CKC7TbWVeKdX2UKGgGaAloD0MI3GPpQxe0BsCUhpRSlGgVSzJoFkdAigptNJvo/3V9lChoBmgJaA9DCD0P7s7a7RTAlIaUUpRoFUsyaBZHQIoJYzLwF1V1fZQoaAZoCWgPQwi4rwPnjOgJwJSGlFKUaBVLMmgWR0CKERhFVktmdX2UKGgGaAloD0MIAwe0dAVbCMCUhpRSlGgVSzJoFkdAihAZoXbdrXV9lChoBmgJaA9DCNC2mnXGVwnAlIaUUpRoFUsyaBZHQIoO0ehf0Ep1fZQoaAZoCWgPQwhnutdJfVnyv5SGlFKUaBVLMmgWR0CKDcdhAnlXdX2UKGgGaAloD0MIjgOvljvzBcCUhpRSlGgVSzJoFkdAihU11wHZ9XV9lChoBmgJaA9DCP4ORYE+Uf6/lIaUUpRoFUsyaBZHQIoUNorWiDd1fZQoaAZoCWgPQwiygt+GGK8GwJSGlFKUaBVLMmgWR0CKEu6xxDLKdX2UKGgGaAloD0MIF7zoK0hTBMCUhpRSlGgVSzJoFkdAihHjj7yhBnV9lChoBmgJaA9DCAZKCiyAKfu/lIaUUpRoFUsyaBZHQIoZsRYigTR1fZQoaAZoCWgPQwhdUrXdBP8MwJSGlFKUaBVLMmgWR0CKGLJr+HafdX2UKGgGaAloD0MIOltAaD388b+UhpRSlGgVSzJoFkdAihdqq4pc5nV9lChoBmgJaA9DCNQq+kMzD/G/lIaUUpRoFUsyaBZHQIoWYKBun/F1fZQoaAZoCWgPQwir0asBSkP1v5SGlFKUaBVLMmgWR0CKHft+kP+XdX2UKGgGaAloD0MIyjSaXIyhAMCUhpRSlGgVSzJoFkdAihz8mrsByXV9lChoBmgJaA9DCLK7QEmBBey/lIaUUpRoFUsyaBZHQIobtMTN+sp1fZQoaAZoCWgPQwh/9iNFZNj6v5SGlFKUaBVLMmgWR0CKGqphF3INdX2UKGgGaAloD0MI8yA9RQ4R6L+UhpRSlGgVSzJoFkdAiiJHuAqd6XV9lChoBmgJaA9DCDKR0mweFxTAlIaUUpRoFUsyaBZHQIohSC+UQkJ1fZQoaAZoCWgPQwgqAwe0dIUBwJSGlFKUaBVLMmgWR0CKH//vOQhfdX2UKGgGaAloD0MID39N1qhH+L+UhpRSlGgVSzJoFkdAih72Bas6rHV9lChoBmgJaA9DCL2L9+P2i/i/lIaUUpRoFUsyaBZHQIomka4tpVV1fZQoaAZoCWgPQwhmhSLdzykKwJSGlFKUaBVLMmgWR0CKJZJvHcUNdX2UKGgGaAloD0MIaNDQP8EF+b+UhpRSlGgVSzJoFkdAiiRKIi1RcnV9lChoBmgJaA9DCL06x4DslQnAlIaUUpRoFUsyaBZHQIojP2RJVbR1fZQoaAZoCWgPQwghO29js0MAwJSGlFKUaBVLMmgWR0CKKvYWcjJNdX2UKGgGaAloD0MIPYIbKVuk87+UhpRSlGgVSzJoFkdAiin3YcvM83V9lChoBmgJaA9DCMuisIuipw3AlIaUUpRoFUsyaBZHQIoor5CWu5l1fZQoaAZoCWgPQwhAprVpbK/+v5SGlFKUaBVLMmgWR0CKJ6X7+DODdX2UKGgGaAloD0MI+yKhLefS8r+UhpRSlGgVSzJoFkdAii9qQaJhv3V9lChoBmgJaA9DCFqdnKG4IwLAlIaUUpRoFUsyaBZHQIoua3LFGXp1fZQoaAZoCWgPQwi3lzRG60gCwJSGlFKUaBVLMmgWR0CKLSMo+fRNdX2UKGgGaAloD0MIB0KygAkc9b+UhpRSlGgVSzJoFkdAiiwZk9U0enV9lChoBmgJaA9DCCqnPSXnFBLAlIaUUpRoFUsyaBZHQIozzdxhlUZ1fZQoaAZoCWgPQwhtdM5PcZwCwJSGlFKUaBVLMmgWR0CKMs8IRh+fdX2UKGgGaAloD0MIQ67UsyAU8r+UhpRSlGgVSzJoFkdAijGGe+VTrHV9lChoBmgJaA9DCMFyhAzkmfO/lIaUUpRoFUsyaBZHQIowfPAwfyR1fZQoaAZoCWgPQwgx0/avrLTyv5SGlFKUaBVLMmgWR0CKOBPuXu3MdX2UKGgGaAloD0MIGQEVjiDV9b+UhpRSlGgVSzJoFkdAijcU5uIhyXV9lChoBmgJaA9DCI1Cklm9YxXAlIaUUpRoFUsyaBZHQIo1zLSuyNZ1fZQoaAZoCWgPQwgWiJ6USR0SwJSGlFKUaBVLMmgWR0CKNMIHC4z8dX2UKGgGaAloD0MICAQ6kzYV/r+UhpRSlGgVSzJoFkdAijxnjZL7GnV9lChoBmgJaA9DCOBJC5dVmPu/lIaUUpRoFUsyaBZHQIo7aIgvDgt1fZQoaAZoCWgPQwjaxTTTvc7nv5SGlFKUaBVLMmgWR0CKOiBgeA/cdX2UKGgGaAloD0MIV12HakqSAcCUhpRSlGgVSzJoFkdAijkWFev6j3V9lChoBmgJaA9DCIidKXReY++/lIaUUpRoFUsyaBZHQIpA1GI9C/p1fZQoaAZoCWgPQwhvZvSj4dTyv5SGlFKUaBVLMmgWR0CKP9Tn7pFDdX2UKGgGaAloD0MINBE2PL0SAsCUhpRSlGgVSzJoFkdAij6MnRb8nHV9lChoBmgJaA9DCKSqCaLuQwrAlIaUUpRoFUsyaBZHQIo9gpYs/Y91fZQoaAZoCWgPQwjww0FClK/ov5SGlFKUaBVLMmgWR0CKRR8CxNZedX2UKGgGaAloD0MIPFCnPLqR/r+UhpRSlGgVSzJoFkdAikQgLRa5gHV9lChoBmgJaA9DCBL27SQifPO/lIaUUpRoFUsyaBZHQIpC145cTrV1fZQoaAZoCWgPQwj1EmOZfqkEwJSGlFKUaBVLMmgWR0CKQcz67/XHdX2UKGgGaAloD0MIDMhe7/54BsCUhpRSlGgVSzJoFkdAiklw+UyHmHV9lChoBmgJaA9DCDv7yoP01PK/lIaUUpRoFUsyaBZHQIpIcaMrEtN1fZQoaAZoCWgPQwik42pkV1r5v5SGlFKUaBVLMmgWR0CKRyl8gIQfdX2UKGgGaAloD0MIZsBZSpaT6r+UhpRSlGgVSzJoFkdAikYfG2kSEnV9lChoBmgJaA9DCH/ZPXlYOBTAlIaUUpRoFUsyaBZHQIpNtVghKUV1fZQoaAZoCWgPQwiY9s391ePqv5SGlFKUaBVLMmgWR0CKTLcHnlnzdX2UKGgGaAloD0MIFTlE3JwKB8CUhpRSlGgVSzJoFkdAiktuZssQNHV9lChoBmgJaA9DCI/jh0ojhgbAlIaUUpRoFUsyaBZHQIpKY+jdpIt1fZQoaAZoCWgPQwgBh1ClZg/3v5SGlFKUaBVLMmgWR0CKUhEcbR4RdX2UKGgGaAloD0MI1nCRe7o6/r+UhpRSlGgVSzJoFkdAilERx1gYxnV9lChoBmgJaA9DCJZa7zfacQLAlIaUUpRoFUsyaBZHQIpPyVY6nzh1fZQoaAZoCWgPQwjcvdwnR4EHwJSGlFKUaBVLMmgWR0CKTr7bcoH+dX2UKGgGaAloD0MIbVfog2Ws8r+UhpRSlGgVSzJoFkdAilZ7nPmganV9lChoBmgJaA9DCKq53GCow/S/lIaUUpRoFUsyaBZHQIpVfFxXGOx1fZQoaAZoCWgPQwjf3jXoS68IwJSGlFKUaBVLMmgWR0CKVDO4XoC/dX2UKGgGaAloD0MIMqzijczDBcCUhpRSlGgVSzJoFkdAilMph4MWoHV9lChoBmgJaA9DCBKHbCBdbP+/lIaUUpRoFUsyaBZHQIpa7WCmMwV1fZQoaAZoCWgPQwiv7e2W5BAXwJSGlFKUaBVLMmgWR0CKWe5q/M4cdX2UKGgGaAloD0MIi1BsBU1rAsCUhpRSlGgVSzJoFkdAilimbCrLhnV9lChoBmgJaA9DCNV7Kqc9ZQjAlIaUUpRoFUsyaBZHQIpXnAEdNnJ1fZQoaAZoCWgPQwibyqKwiyL2v5SGlFKUaBVLMmgWR0CKXynNxEORdX2UKGgGaAloD0MI4V8EjZl0EsCUhpRSlGgVSzJoFkdAil4qL0jC53V9lChoBmgJaA9DCBA//z14/RDAlIaUUpRoFUsyaBZHQIpc5QHiWE91fZQoaAZoCWgPQwi8JM6KqDkQwJSGlFKUaBVLMmgWR0CKW9umaYu1dX2UKGgGaAloD0MIeVvptdmY8L+UhpRSlGgVSzJoFkdAimOlA3T/hnV9lChoBmgJaA9DCKIqptJP+Pi/lIaUUpRoFUsyaBZHQIpipciW3Sd1fZQoaAZoCWgPQwhqpKXydgQRwJSGlFKUaBVLMmgWR0CKYV10T101dX2UKGgGaAloD0MIu7a3W5JzEMCUhpRSlGgVSzJoFkdAimBTpPhybXV9lChoBmgJaA9DCNlfdk8eVvS/lIaUUpRoFUsyaBZHQIpnxB/qgRN1fZQoaAZoCWgPQwi6gm3Ek538v5SGlFKUaBVLMmgWR0CKZsVRk3CLdX2UKGgGaAloD0MI5wEs8uvHEMCUhpRSlGgVSzJoFkdAimV9KEnLJXV9lChoBmgJaA9DCOdWCKuxxATAlIaUUpRoFUsyaBZHQIpkclolD4R1fZQoaAZoCWgPQwgQlUbM7HP6v5SGlFKUaBVLMmgWR0CKbAFY+0PZdX2UKGgGaAloD0MIVWmLa3ym+L+UhpRSlGgVSzJoFkdAimsB0Qsf73V9lChoBmgJaA9DCJz6QPLOgRHAlIaUUpRoFUsyaBZHQIppucFyJbd1fZQoaAZoCWgPQwgwRiQKLav9v5SGlFKUaBVLMmgWR0CKaK9RrJr+dX2UKGgGaAloD0MIGw+22O3TAcCUhpRSlGgVSzJoFkdAinBDvE0iyXV9lChoBmgJaA9DCKD83TtqTPO/lIaUUpRoFUsyaBZHQIpvRD5TIeZ1fZQoaAZoCWgPQwg/5gMCnUn2v5SGlFKUaBVLMmgWR0CKbfvJiiItdX2UKGgGaAloD0MIigCnd/EOEcCUhpRSlGgVSzJoFkdAimzxa5f+j3V9lChoBmgJaA9DCAJnKVlOIgfAlIaUUpRoFUsyaBZHQIp08mQbMot1fZQoaAZoCWgPQwiuKZDZWfTzv5SGlFKUaBVLMmgWR0CKc/KVY6n0dX2UKGgGaAloD0MIRuwTQDFiEcCUhpRSlGgVSzJoFkdAinKq6FuejHV9lChoBmgJaA9DCOvld5rM+PO/lIaUUpRoFUsyaBZHQIpxoGGEf1Z1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 16884,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13fe71085398bdf9401ce777de325d3621a94330864abe0358b4051541a33b46
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ce7e0c456c38c9367cb2179426d97a5ad516c3654e5dd92caef0590080401b8
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4e555d4790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4e555d3800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681587102968390211, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtvC9PgePqjv3YQA/tvC9PgePqjv3YQA/tvC9PgePqjv3YQA/tvC9PgePqjv3YQA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADHatvyKFoj8iRR0//b+iPeIWjD9ADKi/G+ryvPCplL9bLTw/BDaFP7ymMD+gKtc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC28L0+B4+qO/dhAD/p2Zm58e9vOtpYvDm28L0+B4+qO/dhAD/p2Zm58e9vOtpYvDm28L0+B4+qO/dhAD/p2Zm58e9vOtpYvDm28L0+B4+qO/dhAD/p2Zm58e9vOtpYvDmUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3709771 0.00520504 0.5014948 ]\n [0.3709771 0.00520504 0.5014948 ]\n [0.3709771 0.00520504 0.5014948 ]\n [0.3709771 0.00520504 0.5014948 ]]", "desired_goal": "[[-1.355165 1.2696879 0.61433613]\n [ 0.07946775 1.0944483 -1.3128738 ]\n [-0.02965265 -1.1614361 0.73506707]\n [ 1.0407109 0.69004416 1.6809883 ]]", "observation": "[[ 3.7097710e-01 5.2050385e-03 5.0149482e-01 -2.9344790e-04\n 9.1528805e-04 3.5924354e-04]\n [ 3.7097710e-01 5.2050385e-03 5.0149482e-01 -2.9344790e-04\n 9.1528805e-04 3.5924354e-04]\n [ 3.7097710e-01 5.2050385e-03 5.0149482e-01 -2.9344790e-04\n 9.1528805e-04 3.5924354e-04]\n [ 3.7097710e-01 5.2050385e-03 5.0149482e-01 -2.9344790e-04\n 9.1528805e-04 3.5924354e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYcoQPf9K/b0Mm5g9lFb0vHE/lbwrLCo+xAsIvkK48r0PcAY+0PkePOGIiDxCIlE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03534925 -0.1236782 0.07451448]\n [-0.02982644 -0.01821873 0.16618411]\n [-0.13285738 -0.11851551 0.13128684]\n [ 0.00970311 0.01666683 0.05105806]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyzDuBtE6BcCUhpRSlIwBbJRLMowBdJRHQKZsaLVFx4p1fZQoaAZoCWgPQwiyKy0j9V4BwJSGlFKUaBVLMmgWR0CmbCtPHktFdX2UKGgGaAloD0MIbECEuHJ287+UhpRSlGgVSzJoFkdApmvujVQQ+XV9lChoBmgJaA9DCNmUK7zLRQvAlIaUUpRoFUsyaBZHQKZrrgYxcml1fZQoaAZoCWgPQwhPllrvN5r6v5SGlFKUaBVLMmgWR0CmbcccMmWudX2UKGgGaAloD0MI26Z4XFSL+L+UhpRSlGgVSzJoFkdApm2JwdbPhXV9lChoBmgJaA9DCPBQFOgTGQDAlIaUUpRoFUsyaBZHQKZtTRNyo4x1fZQoaAZoCWgPQwhFK/cCs+IFwJSGlFKUaBVLMmgWR0CmbQyt3fQ8dX2UKGgGaAloD0MIWwuz0M5pBMCUhpRSlGgVSzJoFkdApm8lKsdT53V9lChoBmgJaA9DCNhkjXqIhgvAlIaUUpRoFUsyaBZHQKZu5+o99tx1fZQoaAZoCWgPQwiJXkax3DIBwJSGlFKUaBVLMmgWR0CmbqsVclgMdX2UKGgGaAloD0MIcw8J3/tb/7+UhpRSlGgVSzJoFkdApm5qnDR+jXV9lChoBmgJaA9DCH+HokCfyPW/lIaUUpRoFUsyaBZHQKZwj+kxh2J1fZQoaAZoCWgPQwjncRjMX+EAwJSGlFKUaBVLMmgWR0CmcFLMTviMdX2UKGgGaAloD0MIU1xV9l1RCsCUhpRSlGgVSzJoFkdApnAWPFNtZXV9lChoBmgJaA9DCKXcfY6PVgjAlIaUUpRoFUsyaBZHQKZv1fwZwXJ1fZQoaAZoCWgPQwg2I4PcRRgFwJSGlFKUaBVLMmgWR0CmcjTBInSfdX2UKGgGaAloD0MI0a+tn/7zBcCUhpRSlGgVSzJoFkdApnH3gNwzcnV9lChoBmgJaA9DCNzXgXNGlPq/lIaUUpRoFUsyaBZHQKZxuv38GcF1fZQoaAZoCWgPQwil2NE41E8DwJSGlFKUaBVLMmgWR0CmcXrVWjoIdX2UKGgGaAloD0MIvRqgNNRo+r+UhpRSlGgVSzJoFkdApnPH225QQHV9lChoBmgJaA9DCIrkK4GU2PS/lIaUUpRoFUsyaBZHQKZzitWdVed1fZQoaAZoCWgPQwgxRE5fz5f2v5SGlFKUaBVLMmgWR0Cmc04Cp3otdX2UKGgGaAloD0MIn6wYrg6gCcCUhpRSlGgVSzJoFkdApnMNrdnCf3V9lChoBmgJaA9DCBtl/WZi2gbAlIaUUpRoFUsyaBZHQKZ1SUjcEeR1fZQoaAZoCWgPQwjaHVIMkGgMwJSGlFKUaBVLMmgWR0CmdQu7YkE+dX2UKGgGaAloD0MIYeEkzR8zCcCUhpRSlGgVSzJoFkdApnTOdy1eB3V9lChoBmgJaA9DCLx31JgQMw7AlIaUUpRoFUsyaBZHQKZ0jW3jMmp1fZQoaAZoCWgPQwhkzF1LyIcHwJSGlFKUaBVLMmgWR0Cmdi2gWac7dX2UKGgGaAloD0MIiuQrgZRYBMCUhpRSlGgVSzJoFkdApnXvztkWh3V9lChoBmgJaA9DCDJ2wktwqve/lIaUUpRoFUsyaBZHQKZ1sqe9SMt1fZQoaAZoCWgPQwigppat9WUKwJSGlFKUaBVLMmgWR0CmdXGhEjPfdX2UKGgGaAloD0MI5BJHHohMDMCUhpRSlGgVSzJoFkdApncJBNVR13V9lChoBmgJaA9DCIyiBz4G6/u/lIaUUpRoFUsyaBZHQKZ2yyvcJt11fZQoaAZoCWgPQwg50ENtG0YHwJSGlFKUaBVLMmgWR0Cmdo3YlIEsdX2UKGgGaAloD0MIPiKmRBJ9A8CUhpRSlGgVSzJoFkdApnZM7hegMHV9lChoBmgJaA9DCM/XLJeNzgrAlIaUUpRoFUsyaBZHQKZ34/Efkmx1fZQoaAZoCWgPQwjlCu9yEd8FwJSGlFKUaBVLMmgWR0Cmd6YVIqb0dX2UKGgGaAloD0MIQSlauRc4BMCUhpRSlGgVSzJoFkdApndowPAfuHV9lChoBmgJaA9DCIsWoG01iwLAlIaUUpRoFUsyaBZHQKZ3J9rGipN1fZQoaAZoCWgPQwhBLnHkgcj+v5SGlFKUaBVLMmgWR0CmeL4YR/VidX2UKGgGaAloD0MIbXAi+rUVBsCUhpRSlGgVSzJoFkdApniALw4KhXV9lChoBmgJaA9DCOIC0ChdGgjAlIaUUpRoFUsyaBZHQKZ4QtxMnJF1fZQoaAZoCWgPQwhxcVRuomYSwJSGlFKUaBVLMmgWR0CmeAHZsbeedX2UKGgGaAloD0MIhxiveVUn9b+UhpRSlGgVSzJoFkdApnmWyu6mO3V9lChoBmgJaA9DCGlVSzrKwQbAlIaUUpRoFUsyaBZHQKZ5WO09hZ11fZQoaAZoCWgPQwjxS/28qWgAwJSGlFKUaBVLMmgWR0CmeRuyVv/BdX2UKGgGaAloD0MIpgux+iOMA8CUhpRSlGgVSzJoFkdApnjbAgxJunV9lChoBmgJaA9DCB2vQPSkvBHAlIaUUpRoFUsyaBZHQKZ6f2qT8pF1fZQoaAZoCWgPQwjoFroSgcoLwJSGlFKUaBVLMmgWR0CmekGLcbiqdX2UKGgGaAloD0MI+BxYjpCB+b+UhpRSlGgVSzJoFkdApnoERjBl+XV9lChoBmgJaA9DCJHVrZ6T/gLAlIaUUpRoFUsyaBZHQKZ5w0hvBJt1fZQoaAZoCWgPQwgGuvYF9AIEwJSGlFKUaBVLMmgWR0Cme2FdC3PSdX2UKGgGaAloD0MIm1Wfq61Y/L+UhpRSlGgVSzJoFkdApnsjqIJqqXV9lChoBmgJaA9DCMhfWtQn2QXAlIaUUpRoFUsyaBZHQKZ65mHP/rB1fZQoaAZoCWgPQwgicCTQYJMKwJSGlFKUaBVLMmgWR0CmeqVrqMWHdX2UKGgGaAloD0MIoiqm0k8YBcCUhpRSlGgVSzJoFkdApnxVUVBUrHV9lChoBmgJaA9DCJ2gTQ6fdPe/lIaUUpRoFUsyaBZHQKZ8F4oqkM11fZQoaAZoCWgPQwhW8NsQ4xUEwJSGlFKUaBVLMmgWR0Cme9pz1bqydX2UKGgGaAloD0MIHAk02NS587+UhpRSlGgVSzJoFkdApnuZ0W/JvHV9lChoBmgJaA9DCFafq63YXwLAlIaUUpRoFUsyaBZHQKZ9NHuqm0p1fZQoaAZoCWgPQwjY0w5/TXYIwJSGlFKUaBVLMmgWR0CmfPaAnUlSdX2UKGgGaAloD0MI5ulcUUroCMCUhpRSlGgVSzJoFkdApny5UaQ3gnV9lChoBmgJaA9DCO1kcJS8ev6/lIaUUpRoFUsyaBZHQKZ8eI+nqFB1fZQoaAZoCWgPQwgAyt+9o6YLwJSGlFKUaBVLMmgWR0CmfhTZpSJkdX2UKGgGaAloD0MIQyCXOPJgBsCUhpRSlGgVSzJoFkdApn3XBvaURnV9lChoBmgJaA9DCCTTodPzzgbAlIaUUpRoFUsyaBZHQKZ9mb1h9b51fZQoaAZoCWgPQwj430p2bCQHwJSGlFKUaBVLMmgWR0CmfVjIikftdX2UKGgGaAloD0MIa5+OxwwU/7+UhpRSlGgVSzJoFkdApn72LaVUuXV9lChoBmgJaA9DCJpfzQGC+fe/lIaUUpRoFUsyaBZHQKZ+uHM2WIJ1fZQoaAZoCWgPQwixUdZvJuYFwJSGlFKUaBVLMmgWR0CmfntSAH3UdX2UKGgGaAloD0MISUikbfwpDsCUhpRSlGgVSzJoFkdApn46XQdCFHV9lChoBmgJaA9DCMR6o1aYHgfAlIaUUpRoFUsyaBZHQKZ/3vGZNPB1fZQoaAZoCWgPQwhNLVvri6QPwJSGlFKUaBVLMmgWR0Cmf6GPxQSBdX2UKGgGaAloD0MIGXWtvU8V9b+UhpRSlGgVSzJoFkdApn9lDjR2KXV9lChoBmgJaA9DCGN8mL1smwXAlIaUUpRoFUsyaBZHQKZ/JJYkmhN1fZQoaAZoCWgPQwjeADPfwQ8MwJSGlFKUaBVLMmgWR0CmgMJoK2KEdX2UKGgGaAloD0MIZJEm3gHuEMCUhpRSlGgVSzJoFkdApoCEeGO+7HV9lChoBmgJaA9DCOksswjFlvi/lIaUUpRoFUsyaBZHQKaARyxRl6J1fZQoaAZoCWgPQwjjpDDvcab+v5SGlFKUaBVLMmgWR0CmgAZhScbzdX2UKGgGaAloD0MIzosTX+3oDMCUhpRSlGgVSzJoFkdApoGXWhAWznV9lChoBmgJaA9DCFn9EYYBiwbAlIaUUpRoFUsyaBZHQKaBWW2w3YN1fZQoaAZoCWgPQwgDCYofYy4FwJSGlFKUaBVLMmgWR0CmgRwKjSG8dX2UKGgGaAloD0MI+13Ymq08AMCUhpRSlGgVSzJoFkdApoDbGHYYi3V9lChoBmgJaA9DCG3Jqgg3+RDAlIaUUpRoFUsyaBZHQKaCiURFqi51fZQoaAZoCWgPQwgIPgYrTlUKwJSGlFKUaBVLMmgWR0CmgktY8uBddX2UKGgGaAloD0MICqLuA5DaBMCUhpRSlGgVSzJoFkdApoIOOwPiDXV9lChoBmgJaA9DCJQzFHe8iQrAlIaUUpRoFUsyaBZHQKaBzS9/SYx1fZQoaAZoCWgPQwjfN772zLICwJSGlFKUaBVLMmgWR0Cmg3C2UjcEdX2UKGgGaAloD0MIq1s9J70vAsCUhpRSlGgVSzJoFkdApoMy1stTUHV9lChoBmgJaA9DCNFbPLznIAbAlIaUUpRoFUsyaBZHQKaC9XdTHbR1fZQoaAZoCWgPQwhZFkz8UZQKwJSGlFKUaBVLMmgWR0CmgrRVZLZjdX2UKGgGaAloD0MIQl96+3MR9b+UhpRSlGgVSzJoFkdApoRRri2lVXV9lChoBmgJaA9DCAgiizTx7gHAlIaUUpRoFUsyaBZHQKaEE9LYf4h1fZQoaAZoCWgPQwgfuwuUFLgJwJSGlFKUaBVLMmgWR0Cmg9ZxzaK2dX2UKGgGaAloD0MI+ir52F2ACcCUhpRSlGgVSzJoFkdApoOVd/rjYXV9lChoBmgJaA9DCBFxcyoZwAHAlIaUUpRoFUsyaBZHQKaFMMG5c1R1fZQoaAZoCWgPQwgIlE25wrsCwJSGlFKUaBVLMmgWR0CmhPLZi/fwdX2UKGgGaAloD0MI6sw9JHyPBsCUhpRSlGgVSzJoFkdApoS1iYsunXV9lChoBmgJaA9DCKRuZ1958A3AlIaUUpRoFUsyaBZHQKaEdIOH3111ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe60913a700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe609139a00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 337680, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673899159075181639, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhW9LPlHktz+YRzG+4xAzv1cpdj+4TsS+jrO1vtolGj9tdOg/Okugv6GBuD+OS+c+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6NONP+G9yj95Ptm+jd+nv5TVUT8rPr++VFCnP965TT+PGdk/9xHKv21ysz8FEO8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFb0s+UeS3P5hHMb6in9G8vn59u0lTkLvjEDO/Vyl2P7hOxL4v+o29mFRguxslI76Os7W+2iUaP2106D9+iYA9gB9SvZMiqDs6S6C/oYG4P45L5z4uzUW9l+iWPRB0jL2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.1986676 1.4366552 -0.17312467]\n [-0.6994764 0.9615683 -0.38341308]\n [-0.35488552 0.60214007 1.816053 ]\n [-1.2522957 1.441456 0.4517483 ]]", "desired_goal": "[[ 1.1080294 1.5839196 -0.42430475]\n [-1.3115097 0.8196652 -0.37352118]\n [ 1.3071389 0.80361736 1.6960925 ]\n [-1.5786732 1.4019295 0.4669191 ]]", "observation": "[[ 0.1986676 1.4366552 -0.17312467 -0.02558881 -0.00386803 -0.00440446]\n [-0.6994764 0.9615683 -0.38341308 -0.06932484 -0.00342301 -0.15932123]\n [-0.35488552 0.60214007 1.816053 0.06276225 -0.05129957 0.00513107]\n [-1.2522957 1.441456 0.4517483 -0.04829138 0.07368582 -0.06858075]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfkmsveOqFj7OX1w+i1fkPZPYWj1XvEg+eYLdvBgYH71BDnc82h8BPiL6DT5rCCI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08412455 0.14713626 0.21520922]\n [ 0.1114951 0.0534292 0.19603096]\n [-0.02703975 -0.03884134 0.01507908]\n [ 0.12609807 0.1386495 0.15823524]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.83116, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBf2FHjE6B8CUhpRSlIwBbJRLMowBdJRHQIoMsijcmBx1fZQoaAZoCWgPQwhT7Ggc6jf5v5SGlFKUaBVLMmgWR0CKC7TbWVeKdX2UKGgGaAloD0MI3GPpQxe0BsCUhpRSlGgVSzJoFkdAigptNJvo/3V9lChoBmgJaA9DCD0P7s7a7RTAlIaUUpRoFUsyaBZHQIoJYzLwF1V1fZQoaAZoCWgPQwi4rwPnjOgJwJSGlFKUaBVLMmgWR0CKERhFVktmdX2UKGgGaAloD0MIAwe0dAVbCMCUhpRSlGgVSzJoFkdAihAZoXbdrXV9lChoBmgJaA9DCNC2mnXGVwnAlIaUUpRoFUsyaBZHQIoO0ehf0Ep1fZQoaAZoCWgPQwhnutdJfVnyv5SGlFKUaBVLMmgWR0CKDcdhAnlXdX2UKGgGaAloD0MIjgOvljvzBcCUhpRSlGgVSzJoFkdAihU11wHZ9XV9lChoBmgJaA9DCP4ORYE+Uf6/lIaUUpRoFUsyaBZHQIoUNorWiDd1fZQoaAZoCWgPQwiygt+GGK8GwJSGlFKUaBVLMmgWR0CKEu6xxDLKdX2UKGgGaAloD0MIF7zoK0hTBMCUhpRSlGgVSzJoFkdAihHjj7yhBnV9lChoBmgJaA9DCAZKCiyAKfu/lIaUUpRoFUsyaBZHQIoZsRYigTR1fZQoaAZoCWgPQwhdUrXdBP8MwJSGlFKUaBVLMmgWR0CKGLJr+HafdX2UKGgGaAloD0MIOltAaD388b+UhpRSlGgVSzJoFkdAihdqq4pc5nV9lChoBmgJaA9DCNQq+kMzD/G/lIaUUpRoFUsyaBZHQIoWYKBun/F1fZQoaAZoCWgPQwir0asBSkP1v5SGlFKUaBVLMmgWR0CKHft+kP+XdX2UKGgGaAloD0MIyjSaXIyhAMCUhpRSlGgVSzJoFkdAihz8mrsByXV9lChoBmgJaA9DCLK7QEmBBey/lIaUUpRoFUsyaBZHQIobtMTN+sp1fZQoaAZoCWgPQwh/9iNFZNj6v5SGlFKUaBVLMmgWR0CKGqphF3INdX2UKGgGaAloD0MI8yA9RQ4R6L+UhpRSlGgVSzJoFkdAiiJHuAqd6XV9lChoBmgJaA9DCDKR0mweFxTAlIaUUpRoFUsyaBZHQIohSC+UQkJ1fZQoaAZoCWgPQwgqAwe0dIUBwJSGlFKUaBVLMmgWR0CKH//vOQhfdX2UKGgGaAloD0MID39N1qhH+L+UhpRSlGgVSzJoFkdAih72Bas6rHV9lChoBmgJaA9DCL2L9+P2i/i/lIaUUpRoFUsyaBZHQIomka4tpVV1fZQoaAZoCWgPQwhmhSLdzykKwJSGlFKUaBVLMmgWR0CKJZJvHcUNdX2UKGgGaAloD0MIaNDQP8EF+b+UhpRSlGgVSzJoFkdAiiRKIi1RcnV9lChoBmgJaA9DCL06x4DslQnAlIaUUpRoFUsyaBZHQIojP2RJVbR1fZQoaAZoCWgPQwghO29js0MAwJSGlFKUaBVLMmgWR0CKKvYWcjJNdX2UKGgGaAloD0MIPYIbKVuk87+UhpRSlGgVSzJoFkdAiin3YcvM83V9lChoBmgJaA9DCMuisIuipw3AlIaUUpRoFUsyaBZHQIoor5CWu5l1fZQoaAZoCWgPQwhAprVpbK/+v5SGlFKUaBVLMmgWR0CKJ6X7+DODdX2UKGgGaAloD0MI+yKhLefS8r+UhpRSlGgVSzJoFkdAii9qQaJhv3V9lChoBmgJaA9DCFqdnKG4IwLAlIaUUpRoFUsyaBZHQIoua3LFGXp1fZQoaAZoCWgPQwi3lzRG60gCwJSGlFKUaBVLMmgWR0CKLSMo+fRNdX2UKGgGaAloD0MIB0KygAkc9b+UhpRSlGgVSzJoFkdAiiwZk9U0enV9lChoBmgJaA9DCCqnPSXnFBLAlIaUUpRoFUsyaBZHQIozzdxhlUZ1fZQoaAZoCWgPQwhtdM5PcZwCwJSGlFKUaBVLMmgWR0CKMs8IRh+fdX2UKGgGaAloD0MIQ67UsyAU8r+UhpRSlGgVSzJoFkdAijGGe+VTrHV9lChoBmgJaA9DCMFyhAzkmfO/lIaUUpRoFUsyaBZHQIowfPAwfyR1fZQoaAZoCWgPQwgx0/avrLTyv5SGlFKUaBVLMmgWR0CKOBPuXu3MdX2UKGgGaAloD0MIGQEVjiDV9b+UhpRSlGgVSzJoFkdAijcU5uIhyXV9lChoBmgJaA9DCI1Cklm9YxXAlIaUUpRoFUsyaBZHQIo1zLSuyNZ1fZQoaAZoCWgPQwgWiJ6USR0SwJSGlFKUaBVLMmgWR0CKNMIHC4z8dX2UKGgGaAloD0MICAQ6kzYV/r+UhpRSlGgVSzJoFkdAijxnjZL7GnV9lChoBmgJaA9DCOBJC5dVmPu/lIaUUpRoFUsyaBZHQIo7aIgvDgt1fZQoaAZoCWgPQwjaxTTTvc7nv5SGlFKUaBVLMmgWR0CKOiBgeA/cdX2UKGgGaAloD0MIV12HakqSAcCUhpRSlGgVSzJoFkdAijkWFev6j3V9lChoBmgJaA9DCIidKXReY++/lIaUUpRoFUsyaBZHQIpA1GI9C/p1fZQoaAZoCWgPQwhvZvSj4dTyv5SGlFKUaBVLMmgWR0CKP9Tn7pFDdX2UKGgGaAloD0MINBE2PL0SAsCUhpRSlGgVSzJoFkdAij6MnRb8nHV9lChoBmgJaA9DCKSqCaLuQwrAlIaUUpRoFUsyaBZHQIo9gpYs/Y91fZQoaAZoCWgPQwjww0FClK/ov5SGlFKUaBVLMmgWR0CKRR8CxNZedX2UKGgGaAloD0MIPFCnPLqR/r+UhpRSlGgVSzJoFkdAikQgLRa5gHV9lChoBmgJaA9DCBL27SQifPO/lIaUUpRoFUsyaBZHQIpC145cTrV1fZQoaAZoCWgPQwj1EmOZfqkEwJSGlFKUaBVLMmgWR0CKQcz67/XHdX2UKGgGaAloD0MIDMhe7/54BsCUhpRSlGgVSzJoFkdAiklw+UyHmHV9lChoBmgJaA9DCDv7yoP01PK/lIaUUpRoFUsyaBZHQIpIcaMrEtN1fZQoaAZoCWgPQwik42pkV1r5v5SGlFKUaBVLMmgWR0CKRyl8gIQfdX2UKGgGaAloD0MIZsBZSpaT6r+UhpRSlGgVSzJoFkdAikYfG2kSEnV9lChoBmgJaA9DCH/ZPXlYOBTAlIaUUpRoFUsyaBZHQIpNtVghKUV1fZQoaAZoCWgPQwiY9s391ePqv5SGlFKUaBVLMmgWR0CKTLcHnlnzdX2UKGgGaAloD0MIFTlE3JwKB8CUhpRSlGgVSzJoFkdAiktuZssQNHV9lChoBmgJaA9DCI/jh0ojhgbAlIaUUpRoFUsyaBZHQIpKY+jdpIt1fZQoaAZoCWgPQwgBh1ClZg/3v5SGlFKUaBVLMmgWR0CKUhEcbR4RdX2UKGgGaAloD0MI1nCRe7o6/r+UhpRSlGgVSzJoFkdAilERx1gYxnV9lChoBmgJaA9DCJZa7zfacQLAlIaUUpRoFUsyaBZHQIpPyVY6nzh1fZQoaAZoCWgPQwjcvdwnR4EHwJSGlFKUaBVLMmgWR0CKTr7bcoH+dX2UKGgGaAloD0MIbVfog2Ws8r+UhpRSlGgVSzJoFkdAilZ7nPmganV9lChoBmgJaA9DCKq53GCow/S/lIaUUpRoFUsyaBZHQIpVfFxXGOx1fZQoaAZoCWgPQwjf3jXoS68IwJSGlFKUaBVLMmgWR0CKVDO4XoC/dX2UKGgGaAloD0MIMqzijczDBcCUhpRSlGgVSzJoFkdAilMph4MWoHV9lChoBmgJaA9DCBKHbCBdbP+/lIaUUpRoFUsyaBZHQIpa7WCmMwV1fZQoaAZoCWgPQwiv7e2W5BAXwJSGlFKUaBVLMmgWR0CKWe5q/M4cdX2UKGgGaAloD0MIi1BsBU1rAsCUhpRSlGgVSzJoFkdAilimbCrLhnV9lChoBmgJaA9DCNV7Kqc9ZQjAlIaUUpRoFUsyaBZHQIpXnAEdNnJ1fZQoaAZoCWgPQwibyqKwiyL2v5SGlFKUaBVLMmgWR0CKXynNxEORdX2UKGgGaAloD0MI4V8EjZl0EsCUhpRSlGgVSzJoFkdAil4qL0jC53V9lChoBmgJaA9DCBA//z14/RDAlIaUUpRoFUsyaBZHQIpc5QHiWE91fZQoaAZoCWgPQwi8JM6KqDkQwJSGlFKUaBVLMmgWR0CKW9umaYu1dX2UKGgGaAloD0MIeVvptdmY8L+UhpRSlGgVSzJoFkdAimOlA3T/hnV9lChoBmgJaA9DCKIqptJP+Pi/lIaUUpRoFUsyaBZHQIpipciW3Sd1fZQoaAZoCWgPQwhqpKXydgQRwJSGlFKUaBVLMmgWR0CKYV10T101dX2UKGgGaAloD0MIu7a3W5JzEMCUhpRSlGgVSzJoFkdAimBTpPhybXV9lChoBmgJaA9DCNlfdk8eVvS/lIaUUpRoFUsyaBZHQIpnxB/qgRN1fZQoaAZoCWgPQwi6gm3Ek538v5SGlFKUaBVLMmgWR0CKZsVRk3CLdX2UKGgGaAloD0MI5wEs8uvHEMCUhpRSlGgVSzJoFkdAimV9KEnLJXV9lChoBmgJaA9DCOdWCKuxxATAlIaUUpRoFUsyaBZHQIpkclolD4R1fZQoaAZoCWgPQwgQlUbM7HP6v5SGlFKUaBVLMmgWR0CKbAFY+0PZdX2UKGgGaAloD0MIVWmLa3ym+L+UhpRSlGgVSzJoFkdAimsB0Qsf73V9lChoBmgJaA9DCJz6QPLOgRHAlIaUUpRoFUsyaBZHQIppucFyJbd1fZQoaAZoCWgPQwgwRiQKLav9v5SGlFKUaBVLMmgWR0CKaK9RrJr+dX2UKGgGaAloD0MIGw+22O3TAcCUhpRSlGgVSzJoFkdAinBDvE0iyXV9lChoBmgJaA9DCKD83TtqTPO/lIaUUpRoFUsyaBZHQIpvRD5TIeZ1fZQoaAZoCWgPQwg/5gMCnUn2v5SGlFKUaBVLMmgWR0CKbfvJiiItdX2UKGgGaAloD0MIigCnd/EOEcCUhpRSlGgVSzJoFkdAimzxa5f+j3V9lChoBmgJaA9DCAJnKVlOIgfAlIaUUpRoFUsyaBZHQIp08mQbMot1fZQoaAZoCWgPQwiuKZDZWfTzv5SGlFKUaBVLMmgWR0CKc/KVY6n0dX2UKGgGaAloD0MIRuwTQDFiEcCUhpRSlGgVSzJoFkdAinKq6FuejHV9lChoBmgJaA9DCOvld5rM+PO/lIaUUpRoFUsyaBZHQIpxoGGEf1Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16884, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -2.
|
|
|
1 |
+
{"mean_reward": -2.780397089570761, "std_reward": 1.6225465823193843, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T21:36:28.106258"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dba694cbd4c327f63e704073b7750178b3d1dae22c62c156b55f8781ac259bf8
|
3 |
+
size 3138
|