a2c-PandaReachDense-v2 / config.json
tvnguyen's picture
Initial commit
a271ce0
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4e555d4790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4e555d3800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681587102968390211, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtvC9PgePqjv3YQA/tvC9PgePqjv3YQA/tvC9PgePqjv3YQA/tvC9PgePqjv3YQA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADHatvyKFoj8iRR0//b+iPeIWjD9ADKi/G+ryvPCplL9bLTw/BDaFP7ymMD+gKtc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC28L0+B4+qO/dhAD/p2Zm58e9vOtpYvDm28L0+B4+qO/dhAD/p2Zm58e9vOtpYvDm28L0+B4+qO/dhAD/p2Zm58e9vOtpYvDm28L0+B4+qO/dhAD/p2Zm58e9vOtpYvDmUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3709771 0.00520504 0.5014948 ]\n [0.3709771 0.00520504 0.5014948 ]\n [0.3709771 0.00520504 0.5014948 ]\n [0.3709771 0.00520504 0.5014948 ]]", "desired_goal": "[[-1.355165 1.2696879 0.61433613]\n [ 0.07946775 1.0944483 -1.3128738 ]\n [-0.02965265 -1.1614361 0.73506707]\n [ 1.0407109 0.69004416 1.6809883 ]]", "observation": "[[ 3.7097710e-01 5.2050385e-03 5.0149482e-01 -2.9344790e-04\n 9.1528805e-04 3.5924354e-04]\n [ 3.7097710e-01 5.2050385e-03 5.0149482e-01 -2.9344790e-04\n 9.1528805e-04 3.5924354e-04]\n [ 3.7097710e-01 5.2050385e-03 5.0149482e-01 -2.9344790e-04\n 9.1528805e-04 3.5924354e-04]\n [ 3.7097710e-01 5.2050385e-03 5.0149482e-01 -2.9344790e-04\n 9.1528805e-04 3.5924354e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYcoQPf9K/b0Mm5g9lFb0vHE/lbwrLCo+xAsIvkK48r0PcAY+0PkePOGIiDxCIlE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03534925 -0.1236782 0.07451448]\n [-0.02982644 -0.01821873 0.16618411]\n [-0.13285738 -0.11851551 0.13128684]\n [ 0.00970311 0.01666683 0.05105806]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyzDuBtE6BcCUhpRSlIwBbJRLMowBdJRHQKZsaLVFx4p1fZQoaAZoCWgPQwiyKy0j9V4BwJSGlFKUaBVLMmgWR0CmbCtPHktFdX2UKGgGaAloD0MIbECEuHJ287+UhpRSlGgVSzJoFkdApmvujVQQ+XV9lChoBmgJaA9DCNmUK7zLRQvAlIaUUpRoFUsyaBZHQKZrrgYxcml1fZQoaAZoCWgPQwhPllrvN5r6v5SGlFKUaBVLMmgWR0CmbcccMmWudX2UKGgGaAloD0MI26Z4XFSL+L+UhpRSlGgVSzJoFkdApm2JwdbPhXV9lChoBmgJaA9DCPBQFOgTGQDAlIaUUpRoFUsyaBZHQKZtTRNyo4x1fZQoaAZoCWgPQwhFK/cCs+IFwJSGlFKUaBVLMmgWR0CmbQyt3fQ8dX2UKGgGaAloD0MIWwuz0M5pBMCUhpRSlGgVSzJoFkdApm8lKsdT53V9lChoBmgJaA9DCNhkjXqIhgvAlIaUUpRoFUsyaBZHQKZu5+o99tx1fZQoaAZoCWgPQwiJXkax3DIBwJSGlFKUaBVLMmgWR0CmbqsVclgMdX2UKGgGaAloD0MIcw8J3/tb/7+UhpRSlGgVSzJoFkdApm5qnDR+jXV9lChoBmgJaA9DCH+HokCfyPW/lIaUUpRoFUsyaBZHQKZwj+kxh2J1fZQoaAZoCWgPQwjncRjMX+EAwJSGlFKUaBVLMmgWR0CmcFLMTviMdX2UKGgGaAloD0MIU1xV9l1RCsCUhpRSlGgVSzJoFkdApnAWPFNtZXV9lChoBmgJaA9DCKXcfY6PVgjAlIaUUpRoFUsyaBZHQKZv1fwZwXJ1fZQoaAZoCWgPQwg2I4PcRRgFwJSGlFKUaBVLMmgWR0CmcjTBInSfdX2UKGgGaAloD0MI0a+tn/7zBcCUhpRSlGgVSzJoFkdApnH3gNwzcnV9lChoBmgJaA9DCNzXgXNGlPq/lIaUUpRoFUsyaBZHQKZxuv38GcF1fZQoaAZoCWgPQwil2NE41E8DwJSGlFKUaBVLMmgWR0CmcXrVWjoIdX2UKGgGaAloD0MIvRqgNNRo+r+UhpRSlGgVSzJoFkdApnPH225QQHV9lChoBmgJaA9DCIrkK4GU2PS/lIaUUpRoFUsyaBZHQKZzitWdVed1fZQoaAZoCWgPQwgxRE5fz5f2v5SGlFKUaBVLMmgWR0Cmc04Cp3otdX2UKGgGaAloD0MIn6wYrg6gCcCUhpRSlGgVSzJoFkdApnMNrdnCf3V9lChoBmgJaA9DCBtl/WZi2gbAlIaUUpRoFUsyaBZHQKZ1SUjcEeR1fZQoaAZoCWgPQwjaHVIMkGgMwJSGlFKUaBVLMmgWR0CmdQu7YkE+dX2UKGgGaAloD0MIYeEkzR8zCcCUhpRSlGgVSzJoFkdApnTOdy1eB3V9lChoBmgJaA9DCLx31JgQMw7AlIaUUpRoFUsyaBZHQKZ0jW3jMmp1fZQoaAZoCWgPQwhkzF1LyIcHwJSGlFKUaBVLMmgWR0Cmdi2gWac7dX2UKGgGaAloD0MIiuQrgZRYBMCUhpRSlGgVSzJoFkdApnXvztkWh3V9lChoBmgJaA9DCDJ2wktwqve/lIaUUpRoFUsyaBZHQKZ1sqe9SMt1fZQoaAZoCWgPQwigppat9WUKwJSGlFKUaBVLMmgWR0CmdXGhEjPfdX2UKGgGaAloD0MI5BJHHohMDMCUhpRSlGgVSzJoFkdApncJBNVR13V9lChoBmgJaA9DCIyiBz4G6/u/lIaUUpRoFUsyaBZHQKZ2yyvcJt11fZQoaAZoCWgPQwg50ENtG0YHwJSGlFKUaBVLMmgWR0Cmdo3YlIEsdX2UKGgGaAloD0MIPiKmRBJ9A8CUhpRSlGgVSzJoFkdApnZM7hegMHV9lChoBmgJaA9DCM/XLJeNzgrAlIaUUpRoFUsyaBZHQKZ34/Efkmx1fZQoaAZoCWgPQwjlCu9yEd8FwJSGlFKUaBVLMmgWR0Cmd6YVIqb0dX2UKGgGaAloD0MIQSlauRc4BMCUhpRSlGgVSzJoFkdApndowPAfuHV9lChoBmgJaA9DCIsWoG01iwLAlIaUUpRoFUsyaBZHQKZ3J9rGipN1fZQoaAZoCWgPQwhBLnHkgcj+v5SGlFKUaBVLMmgWR0CmeL4YR/VidX2UKGgGaAloD0MIbXAi+rUVBsCUhpRSlGgVSzJoFkdApniALw4KhXV9lChoBmgJaA9DCOIC0ChdGgjAlIaUUpRoFUsyaBZHQKZ4QtxMnJF1fZQoaAZoCWgPQwhxcVRuomYSwJSGlFKUaBVLMmgWR0CmeAHZsbeedX2UKGgGaAloD0MIhxiveVUn9b+UhpRSlGgVSzJoFkdApnmWyu6mO3V9lChoBmgJaA9DCGlVSzrKwQbAlIaUUpRoFUsyaBZHQKZ5WO09hZ11fZQoaAZoCWgPQwjxS/28qWgAwJSGlFKUaBVLMmgWR0CmeRuyVv/BdX2UKGgGaAloD0MIpgux+iOMA8CUhpRSlGgVSzJoFkdApnjbAgxJunV9lChoBmgJaA9DCB2vQPSkvBHAlIaUUpRoFUsyaBZHQKZ6f2qT8pF1fZQoaAZoCWgPQwjoFroSgcoLwJSGlFKUaBVLMmgWR0CmekGLcbiqdX2UKGgGaAloD0MI+BxYjpCB+b+UhpRSlGgVSzJoFkdApnoERjBl+XV9lChoBmgJaA9DCJHVrZ6T/gLAlIaUUpRoFUsyaBZHQKZ5w0hvBJt1fZQoaAZoCWgPQwgGuvYF9AIEwJSGlFKUaBVLMmgWR0Cme2FdC3PSdX2UKGgGaAloD0MIm1Wfq61Y/L+UhpRSlGgVSzJoFkdApnsjqIJqqXV9lChoBmgJaA9DCMhfWtQn2QXAlIaUUpRoFUsyaBZHQKZ65mHP/rB1fZQoaAZoCWgPQwgicCTQYJMKwJSGlFKUaBVLMmgWR0CmeqVrqMWHdX2UKGgGaAloD0MIoiqm0k8YBcCUhpRSlGgVSzJoFkdApnxVUVBUrHV9lChoBmgJaA9DCJ2gTQ6fdPe/lIaUUpRoFUsyaBZHQKZ8F4oqkM11fZQoaAZoCWgPQwhW8NsQ4xUEwJSGlFKUaBVLMmgWR0Cme9pz1bqydX2UKGgGaAloD0MIHAk02NS587+UhpRSlGgVSzJoFkdApnuZ0W/JvHV9lChoBmgJaA9DCFafq63YXwLAlIaUUpRoFUsyaBZHQKZ9NHuqm0p1fZQoaAZoCWgPQwjY0w5/TXYIwJSGlFKUaBVLMmgWR0CmfPaAnUlSdX2UKGgGaAloD0MI5ulcUUroCMCUhpRSlGgVSzJoFkdApny5UaQ3gnV9lChoBmgJaA9DCO1kcJS8ev6/lIaUUpRoFUsyaBZHQKZ8eI+nqFB1fZQoaAZoCWgPQwgAyt+9o6YLwJSGlFKUaBVLMmgWR0CmfhTZpSJkdX2UKGgGaAloD0MIQyCXOPJgBsCUhpRSlGgVSzJoFkdApn3XBvaURnV9lChoBmgJaA9DCCTTodPzzgbAlIaUUpRoFUsyaBZHQKZ9mb1h9b51fZQoaAZoCWgPQwj430p2bCQHwJSGlFKUaBVLMmgWR0CmfVjIikftdX2UKGgGaAloD0MIa5+OxwwU/7+UhpRSlGgVSzJoFkdApn72LaVUuXV9lChoBmgJaA9DCJpfzQGC+fe/lIaUUpRoFUsyaBZHQKZ+uHM2WIJ1fZQoaAZoCWgPQwixUdZvJuYFwJSGlFKUaBVLMmgWR0CmfntSAH3UdX2UKGgGaAloD0MISUikbfwpDsCUhpRSlGgVSzJoFkdApn46XQdCFHV9lChoBmgJaA9DCMR6o1aYHgfAlIaUUpRoFUsyaBZHQKZ/3vGZNPB1fZQoaAZoCWgPQwhNLVvri6QPwJSGlFKUaBVLMmgWR0Cmf6GPxQSBdX2UKGgGaAloD0MIGXWtvU8V9b+UhpRSlGgVSzJoFkdApn9lDjR2KXV9lChoBmgJaA9DCGN8mL1smwXAlIaUUpRoFUsyaBZHQKZ/JJYkmhN1fZQoaAZoCWgPQwjeADPfwQ8MwJSGlFKUaBVLMmgWR0CmgMJoK2KEdX2UKGgGaAloD0MIZJEm3gHuEMCUhpRSlGgVSzJoFkdApoCEeGO+7HV9lChoBmgJaA9DCOksswjFlvi/lIaUUpRoFUsyaBZHQKaARyxRl6J1fZQoaAZoCWgPQwjjpDDvcab+v5SGlFKUaBVLMmgWR0CmgAZhScbzdX2UKGgGaAloD0MIzosTX+3oDMCUhpRSlGgVSzJoFkdApoGXWhAWznV9lChoBmgJaA9DCFn9EYYBiwbAlIaUUpRoFUsyaBZHQKaBWW2w3YN1fZQoaAZoCWgPQwgDCYofYy4FwJSGlFKUaBVLMmgWR0CmgRwKjSG8dX2UKGgGaAloD0MI+13Ymq08AMCUhpRSlGgVSzJoFkdApoDbGHYYi3V9lChoBmgJaA9DCG3Jqgg3+RDAlIaUUpRoFUsyaBZHQKaCiURFqi51fZQoaAZoCWgPQwgIPgYrTlUKwJSGlFKUaBVLMmgWR0CmgktY8uBddX2UKGgGaAloD0MICqLuA5DaBMCUhpRSlGgVSzJoFkdApoIOOwPiDXV9lChoBmgJaA9DCJQzFHe8iQrAlIaUUpRoFUsyaBZHQKaBzS9/SYx1fZQoaAZoCWgPQwjfN772zLICwJSGlFKUaBVLMmgWR0Cmg3C2UjcEdX2UKGgGaAloD0MIq1s9J70vAsCUhpRSlGgVSzJoFkdApoMy1stTUHV9lChoBmgJaA9DCNFbPLznIAbAlIaUUpRoFUsyaBZHQKaC9XdTHbR1fZQoaAZoCWgPQwhZFkz8UZQKwJSGlFKUaBVLMmgWR0CmgrRVZLZjdX2UKGgGaAloD0MIQl96+3MR9b+UhpRSlGgVSzJoFkdApoRRri2lVXV9lChoBmgJaA9DCAgiizTx7gHAlIaUUpRoFUsyaBZHQKaEE9LYf4h1fZQoaAZoCWgPQwgfuwuUFLgJwJSGlFKUaBVLMmgWR0Cmg9ZxzaK2dX2UKGgGaAloD0MI+ir52F2ACcCUhpRSlGgVSzJoFkdApoOVd/rjYXV9lChoBmgJaA9DCBFxcyoZwAHAlIaUUpRoFUsyaBZHQKaFMMG5c1R1fZQoaAZoCWgPQwgIlE25wrsCwJSGlFKUaBVLMmgWR0CmhPLZi/fwdX2UKGgGaAloD0MI6sw9JHyPBsCUhpRSlGgVSzJoFkdApoS1iYsunXV9lChoBmgJaA9DCKRuZ1958A3AlIaUUpRoFUsyaBZHQKaEdIOH3111ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}