Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1132.71 +/- 176.80
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63a6b6f22e3006f6ad206d0b2d31493fa95d79ab715f5b816ce556a08f8a558c
|
3 |
+
size 129264
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4375f0c0d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4375f0c160>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4375f0c1f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4375f0c280>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4375f0c310>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4375f0c3a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4375f0c430>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4375f0c4c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4375f0c550>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4375f0c5e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4375f0c670>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4375f0c700>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f4375f02180>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 1256524,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1687165997058946138,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP8yLr+W0gC+VggiP+jUqb3ZfuY/uJOOPiDzgj+oabk+1OIpPySAIr8Yame/wzWpvghB9D7q2Uo/kDKKvkOhfz6hS6A+xc7LPgTHgz/7bBQ+RPEkP52HEb56nWC/Jb3RvPSR1b8NpL4+SOLkPqi3JT95prc+J1JWPzMq7z7l9t4/kRjUv8ZCxb9NgSa/t+0gv6gTWD9x2cE+5r5XvmFfxj5TvCU/dmD+v3uhKj/FPRm+5q7BPfzqhz9SMC4+kp3mPQ10qT8nTJy8jWWQv/ugTLwAbhk/DaS+Pg4qD8D1u8W/pbVlvpxRB0B2GyfAaX4+vwoRND2we6Y9MtbQv5TvkD89VM2/hIUJui8gjL9+jMW85kucP3a1Rry3ubC+af88Pc0Igb9Ii5A+jucAwOKDmz0A4cm/SnmUOelHpT9OfQu9AG4ZPw2kvj4OKg/AqLclP61/1j7ynfE+QV8hP+1aJkCWPow/RN08wL8nKD+Y8sS+wEOZP+6uw7xMWZc/XZq6Px8GP8Aw+Rw+6n3xvtt6X8C4SlC/6gmOPw09HT9BvI8/vTuqP0B34L0RZZC/dAgEvQBuGT8o4ivASOLkPvW7xb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADs8F02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2QqdvQAAAABy+d2/AAAAABozET0AAAAAgdb0PwAAAACFso29AAAAAGBS/z8AAAAAQPXSvQAAAADLXPq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw6Y0NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB4gybwAAAAAG9X+vwAAAAAgWPo8AAAAACdO4j8AAAAAF2zfPAAAAAAMt+Q/AAAAAE72Ar0AAAAAfDLzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKZyvjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB5+w68AAAAAFKd4L8AAAAAXe3fPAAAAADNS9o/AAAAAKDp9j0AAAAAC33yPwAAAAAVZb+9AAAAACwq+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/As22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApr2ZPQAAAADSS/i/AAAAANoKrL0AAAAAafPbPwAAAAB/jpW9AAAAAJp92j8AAAAApigHPQAAAAAtn+a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.37174399999999996,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIsqq15Sm66MAWyUTegDjAF0lEdAocXtCPZIx3V9lChoBkdAjQSzyjHn2mgHTegDaAhHQKHJkR/ViF11fZQoaAZHQIwkV6iTMaFoB03oA2gIR0ChzJhtUGVzdX2UKGgGR0CJ21h3JPqLaAdN6ANoCEdAoc3xqwhW53V9lChoBkdAidC/mLcbi2gHTegDaAhHQKHTd3EAHVx1fZQoaAZHQIwfsKE384xoB03oA2gIR0Ch2TRL0z0pdX2UKGgGR0CH2rtWMju8aAdN6ANoCEdAod0JPGhmG3V9lChoBkdAhiMz/Q0GeWgHTegDaAhHQKHeYf4h2W91fZQoaAZHQIYQLINmUW5oB03oA2gIR0Ch4wArhBJJdX2UKGgGR0CIqBkxREWqaAdN6ANoCEdAoeapPuXu3XV9lChoBkdAjgy3azu4PWgHTegDaAhHQKHppOLR8dB1fZQoaAZHQIxmDor4FidoB03oA2gIR0Ch6vZ3Tuv2dX2UKGgGR0CJ2Nlz2exwaAdN6ANoCEdAoe+6SgXdkHV9lChoBkdAipzE5p8F6mgHTegDaAhHQKH1QbyYoiN1fZQoaAZHQIux1pVS4vxoB03oA2gIR0Ch+hYnWrfcdX2UKGgGR0CLvA5NoJzDaAdN6ANoCEdAofunXd0q6XV9lChoBkdAjKyPa+N96WgHTegDaAhHQKIANN3W4Ex1fZQoaAZHQIi2if4AS39oB03oA2gIR0CiA+5Z8rqddX2UKGgGR0CJpYCUX531aAdN6ANoCEdAogbzPQfIS3V9lChoBkdAjQQXZf2K22gHTegDaAhHQKIITzasZHd1fZQoaAZHQItDO3MINVloB03oA2gIR0CiDOM6RyOrdX2UKGgGR0CJQa7mMfihaAdN6ANoCEdAohFmO6unuXV9lChoBkdAi4kRDb8FZGgHTegDaAhHQKIWAmtyPuJ1fZQoaAZHQIkY55HEuQJoB03oA2gIR0CiGBmhdt2tdX2UKGgGR0CPzt9H+ZPVaAdN6ANoCEdAoh06v/zasnV9lChoBkdAkAcVN1yNoGgHTegDaAhHQKIg5MWXTmZ1fZQoaAZHQIq1Z4Oc2BJoB03oA2gIR0CiI+h4MWoFdX2UKGgGR0COs+QLeANHaAdN6ANoCEdAoiU6ItUXHnV9lChoBkdAjD+yGrS3LGgHTegDaAhHQKIp1uvUz9F1fZQoaAZHQIucOOIZZSxoB03oA2gIR0CiLYo5HVgAdX2UKGgGR0CQoFqhlDneaAdN6ANoCEdAojHBb6guiHV9lChoBkdAit3UQ9RrJ2gHTegDaAhHQKIz3bbDdgx1fZQoaAZHQIYynZRKpUBoB03oA2gIR0CiOkBNmDlHdX2UKGgGR0CH2ZPszEaVaAdN6ANoCEdAoj3gqbz9THV9lChoBkdAikOIPTXrdGgHTegDaAhHQKJA4lZX+2p1fZQoaAZHQJK+Gza9K29oB03oA2gIR0CiQjMguAZsdX2UKGgGR0CUIztihFmWaAdN6ANoCEdAoka5W1c+q3V9lChoBkdAiPWQ482aUmgHTegDaAhHQKJKZLRrrPd1fZQoaAZHQJGvQ+QlruZoB03oA2gIR0CiTbearmyPdX2UKGgGR0CQc1os7MgVaAdN6ANoCEdAok+g5YHPeHV9lChoBkdAjppWTX8O1GgHTegDaAhHQKJWiuCf6Gh1fZQoaAZHQI5F2A7PppxoB03oA2gIR0CiWrC3w1BMdX2UKGgGR0COFX4REnb7aAdN6ANoCEdAol2vIGQjlnV9lChoBkdAi40tfgJkXmgHTegDaAhHQKJe/9BKL891fZQoaAZHQJMUVxBE8aJoB03oA2gIR0CiY4GGdqcmdX2UKGgGR0CT1o+6RQrMaAdN6ANoCEdAomczqW1MNHV9lChoBkdAkcG6LsKLKmgHTegDaAhHQKJqO8Tzund1fZQoaAZHQJLJ+GFi8WdoB03oA2gIR0Cia5MkhRqHdX2UKGgGR0CJ6Nslb/wRaAdN6ANoCEdAonJShlDneXV9lChoBkdAkeFjAeq7y2gHTegDaAhHQKJ3vFLFn7J1fZQoaAZHQJExFK6FueloB03oA2gIR0CieszcZccEdX2UKGgGR0CQpmjNIK+jaAdN6ANoCEdAonwhvkzXSXV9lChoBkdAjwVxD9fkWGgHTegDaAhHQKKArWd3B551fZQoaAZHQId0plJ6IFhoB03oA2gIR0CihFs67ulXdX2UKGgGR0CMjl/FR51OaAdN6ANoCEdAood2QGOdXnV9lChoBkdAkINJWNm16WgHTegDaAhHQKKI1f3vhIh1fZQoaAZHQIjsSqU/wAloB03oA2gIR0CijoZzo2XLdX2UKGgGR0CNwIbn5i3HaAdN6ANoCEdAopQzt5UtI3V9lChoBkdAiUMgy/KyOmgHTegDaAhHQKKYBgG8mKJ1fZQoaAZHQJFCy0Sh8IBoB03oA2gIR0CimV5fdAPedX2UKGgGR0CNb9Uoa1kUaAdN6ANoCEdAop3tqYZ2p3V9lChoBkdAkLSifQKKHmgHTegDaAhHQKKhl7iyY5V1fZQoaAZHQJFIbPVurIZoB03oA2gIR0CipKzMA3kxdX2UKGgGR0CRvAnwob4raAdN6ANoCEdAoqYJckdFOXV9lChoBkdAji1GmUGFBmgHTegDaAhHQKKqsvdM0xd1fZQoaAZHQIud6fra/RFoB03oA2gIR0CisDLV4HHFdX2UKGgGR0CMU7/ZuhsZaAdN6ANoCEdAorTy2F36h3V9lChoBkdAjJxouoP07WgHTegDaAhHQKK2k31BdD91fZQoaAZHQJJOmdbxEv1oB03oA2gIR0CiuyckleF+dX2UKGgGR0CISMc0+C9RaAdN6ANoCEdAor7eK2rn1XV9lChoBkdAiZG/47A+IWgHTegDaAhHQKLB3oUzsQd1fZQoaAZHQI8+27OE/SpoB03oA2gIR0CiwzV5jYqYdX2UKGgGR0CO1VynUDuCaAdN6ANoCEdAosfzXarWAnV9lChoBkdAjQioa99MK2gHTegDaAhHQKLMjVy3kPt1fZQoaAZHQJJXit9x6v9oB03oA2gIR0Ci0ScOskprdX2UKGgGR0CIwz2zOX3QaAdN6ANoCEdAotM/rWy1NXV9lChoBkdAjB8pF9a2W2gHTegDaAhHQKLYWhje9Bd1fZQoaAZHQJHH+DFqBVdoB03oA2gIR0Ci3AaciGFjdX2UKGgGR0CS3EHYHxBmaAdN6ANoCEdAot8RJqZc9nV9lChoBkdAfjtE/0NBnmgHTegDaAhHQKLgaM98qnZ1fZQoaAZHQJQxwWhysCFoB03oA2gIR0Ci5PMqJ/G3dX2UKGgGR0CTbfyYG+sYaAdN6ANoCEdAouirmEGqxXV9lChoBkdAiZxWattALWgHTegDaAhHQKLtHIlMRHx1fZQoaAZHQIlGNFMIu5BoB03oA2gIR0Ci70XIMjNZdX2UKGgGR0CQJpmKZUkwaAdN6ANoCEdAovWl8NQTEnV9lChoBkdAin8pazNUwWgHTegDaAhHQKL5Vg1m8NB1fZQoaAZHQIeK4m5UcXFoB03oA2gIR0Ci/GNEPUaydX2UKGgGR0CIY/T3qRlpaAdN6ANoCEdAov25yhi9ZnV9lChoBkdAjiAC2+fyw2gHTegDaAhHQKMCTPIn0Cl1fZQoaAZHQImg3pbD/ERoB03oA2gIR0CjBgNahYeUdX2UKGgGR0CTZNHJcPe6aAdN6ANoCEdAowl/Z00WM3V9lChoBkdAh/Yte+mFamgHTegDaAhHQKMLbfeDWbx1fZQoaAZHQJQoS7pV0cRoB03oA2gIR0CjEqh8x9G7dX2UKGgGR0CHu6+hXbM5aAdN6ANoCEdAoxaMQ2/BWXV9lChoBkdAi4tCRGMGYGgHTegDaAhHQKMZlNlAeJZ1fZQoaAZHQI16bNSqEOBoB03oA2gIR0CjGvreQ+2WdX2UKGgGR0CQJR3EAHVxaAdN6ANoCEdAox+J3A2ycHV9lChoBkdAi66BStNi6WgHTegDaAhHQKMjOrbxmTV1fZQoaAZHQIqx07hegL9oB03oA2gIR0CjJlg1NxlydX2UKGgGR0CMwLZrYXfqaAdN6ANoCEdAoyfxK8L8aXVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 39266,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e440f166b67e0a26c78d26a99edb4a6827d1584c21742b3e97d3524fe8e688a
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e1ba17ca6e06f180ff971d822ba474ed41976b7802492147ffe2decc07b3da9
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4375f0c0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4375f0c160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4375f0c1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4375f0c280>", "_build": "<function ActorCriticPolicy._build at 0x7f4375f0c310>", "forward": "<function ActorCriticPolicy.forward at 0x7f4375f0c3a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4375f0c430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4375f0c4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4375f0c550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4375f0c5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4375f0c670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4375f0c700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4375f02180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1256524, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687165997058946138, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAP8yLr+W0gC+VggiP+jUqb3ZfuY/uJOOPiDzgj+oabk+1OIpPySAIr8Yame/wzWpvghB9D7q2Uo/kDKKvkOhfz6hS6A+xc7LPgTHgz/7bBQ+RPEkP52HEb56nWC/Jb3RvPSR1b8NpL4+SOLkPqi3JT95prc+J1JWPzMq7z7l9t4/kRjUv8ZCxb9NgSa/t+0gv6gTWD9x2cE+5r5XvmFfxj5TvCU/dmD+v3uhKj/FPRm+5q7BPfzqhz9SMC4+kp3mPQ10qT8nTJy8jWWQv/ugTLwAbhk/DaS+Pg4qD8D1u8W/pbVlvpxRB0B2GyfAaX4+vwoRND2we6Y9MtbQv5TvkD89VM2/hIUJui8gjL9+jMW85kucP3a1Rry3ubC+af88Pc0Igb9Ii5A+jucAwOKDmz0A4cm/SnmUOelHpT9OfQu9AG4ZPw2kvj4OKg/AqLclP61/1j7ynfE+QV8hP+1aJkCWPow/RN08wL8nKD+Y8sS+wEOZP+6uw7xMWZc/XZq6Px8GP8Aw+Rw+6n3xvtt6X8C4SlC/6gmOPw09HT9BvI8/vTuqP0B34L0RZZC/dAgEvQBuGT8o4ivASOLkPvW7xb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADs8F02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2QqdvQAAAABy+d2/AAAAABozET0AAAAAgdb0PwAAAACFso29AAAAAGBS/z8AAAAAQPXSvQAAAADLXPq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw6Y0NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB4gybwAAAAAG9X+vwAAAAAgWPo8AAAAACdO4j8AAAAAF2zfPAAAAAAMt+Q/AAAAAE72Ar0AAAAAfDLzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKZyvjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB5+w68AAAAAFKd4L8AAAAAXe3fPAAAAADNS9o/AAAAAKDp9j0AAAAAC33yPwAAAAAVZb+9AAAAACwq+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/As22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApr2ZPQAAAADSS/i/AAAAANoKrL0AAAAAafPbPwAAAAB/jpW9AAAAAJp92j8AAAAApigHPQAAAAAtn+a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.37174399999999996, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIsqq15Sm66MAWyUTegDjAF0lEdAocXtCPZIx3V9lChoBkdAjQSzyjHn2mgHTegDaAhHQKHJkR/ViF11fZQoaAZHQIwkV6iTMaFoB03oA2gIR0ChzJhtUGVzdX2UKGgGR0CJ21h3JPqLaAdN6ANoCEdAoc3xqwhW53V9lChoBkdAidC/mLcbi2gHTegDaAhHQKHTd3EAHVx1fZQoaAZHQIwfsKE384xoB03oA2gIR0Ch2TRL0z0pdX2UKGgGR0CH2rtWMju8aAdN6ANoCEdAod0JPGhmG3V9lChoBkdAhiMz/Q0GeWgHTegDaAhHQKHeYf4h2W91fZQoaAZHQIYQLINmUW5oB03oA2gIR0Ch4wArhBJJdX2UKGgGR0CIqBkxREWqaAdN6ANoCEdAoeapPuXu3XV9lChoBkdAjgy3azu4PWgHTegDaAhHQKHppOLR8dB1fZQoaAZHQIxmDor4FidoB03oA2gIR0Ch6vZ3Tuv2dX2UKGgGR0CJ2Nlz2exwaAdN6ANoCEdAoe+6SgXdkHV9lChoBkdAipzE5p8F6mgHTegDaAhHQKH1QbyYoiN1fZQoaAZHQIux1pVS4vxoB03oA2gIR0Ch+hYnWrfcdX2UKGgGR0CLvA5NoJzDaAdN6ANoCEdAofunXd0q6XV9lChoBkdAjKyPa+N96WgHTegDaAhHQKIANN3W4Ex1fZQoaAZHQIi2if4AS39oB03oA2gIR0CiA+5Z8rqddX2UKGgGR0CJpYCUX531aAdN6ANoCEdAogbzPQfIS3V9lChoBkdAjQQXZf2K22gHTegDaAhHQKIITzasZHd1fZQoaAZHQItDO3MINVloB03oA2gIR0CiDOM6RyOrdX2UKGgGR0CJQa7mMfihaAdN6ANoCEdAohFmO6unuXV9lChoBkdAi4kRDb8FZGgHTegDaAhHQKIWAmtyPuJ1fZQoaAZHQIkY55HEuQJoB03oA2gIR0CiGBmhdt2tdX2UKGgGR0CPzt9H+ZPVaAdN6ANoCEdAoh06v/zasnV9lChoBkdAkAcVN1yNoGgHTegDaAhHQKIg5MWXTmZ1fZQoaAZHQIq1Z4Oc2BJoB03oA2gIR0CiI+h4MWoFdX2UKGgGR0COs+QLeANHaAdN6ANoCEdAoiU6ItUXHnV9lChoBkdAjD+yGrS3LGgHTegDaAhHQKIp1uvUz9F1fZQoaAZHQIucOOIZZSxoB03oA2gIR0CiLYo5HVgAdX2UKGgGR0CQoFqhlDneaAdN6ANoCEdAojHBb6guiHV9lChoBkdAit3UQ9RrJ2gHTegDaAhHQKIz3bbDdgx1fZQoaAZHQIYynZRKpUBoB03oA2gIR0CiOkBNmDlHdX2UKGgGR0CH2ZPszEaVaAdN6ANoCEdAoj3gqbz9THV9lChoBkdAikOIPTXrdGgHTegDaAhHQKJA4lZX+2p1fZQoaAZHQJK+Gza9K29oB03oA2gIR0CiQjMguAZsdX2UKGgGR0CUIztihFmWaAdN6ANoCEdAoka5W1c+q3V9lChoBkdAiPWQ482aUmgHTegDaAhHQKJKZLRrrPd1fZQoaAZHQJGvQ+QlruZoB03oA2gIR0CiTbearmyPdX2UKGgGR0CQc1os7MgVaAdN6ANoCEdAok+g5YHPeHV9lChoBkdAjppWTX8O1GgHTegDaAhHQKJWiuCf6Gh1fZQoaAZHQI5F2A7PppxoB03oA2gIR0CiWrC3w1BMdX2UKGgGR0COFX4REnb7aAdN6ANoCEdAol2vIGQjlnV9lChoBkdAi40tfgJkXmgHTegDaAhHQKJe/9BKL891fZQoaAZHQJMUVxBE8aJoB03oA2gIR0CiY4GGdqcmdX2UKGgGR0CT1o+6RQrMaAdN6ANoCEdAomczqW1MNHV9lChoBkdAkcG6LsKLKmgHTegDaAhHQKJqO8Tzund1fZQoaAZHQJLJ+GFi8WdoB03oA2gIR0Cia5MkhRqHdX2UKGgGR0CJ6Nslb/wRaAdN6ANoCEdAonJShlDneXV9lChoBkdAkeFjAeq7y2gHTegDaAhHQKJ3vFLFn7J1fZQoaAZHQJExFK6FueloB03oA2gIR0CieszcZccEdX2UKGgGR0CQpmjNIK+jaAdN6ANoCEdAonwhvkzXSXV9lChoBkdAjwVxD9fkWGgHTegDaAhHQKKArWd3B551fZQoaAZHQId0plJ6IFhoB03oA2gIR0CihFs67ulXdX2UKGgGR0CMjl/FR51OaAdN6ANoCEdAood2QGOdXnV9lChoBkdAkINJWNm16WgHTegDaAhHQKKI1f3vhIh1fZQoaAZHQIjsSqU/wAloB03oA2gIR0CijoZzo2XLdX2UKGgGR0CNwIbn5i3HaAdN6ANoCEdAopQzt5UtI3V9lChoBkdAiUMgy/KyOmgHTegDaAhHQKKYBgG8mKJ1fZQoaAZHQJFCy0Sh8IBoB03oA2gIR0CimV5fdAPedX2UKGgGR0CNb9Uoa1kUaAdN6ANoCEdAop3tqYZ2p3V9lChoBkdAkLSifQKKHmgHTegDaAhHQKKhl7iyY5V1fZQoaAZHQJFIbPVurIZoB03oA2gIR0CipKzMA3kxdX2UKGgGR0CRvAnwob4raAdN6ANoCEdAoqYJckdFOXV9lChoBkdAji1GmUGFBmgHTegDaAhHQKKqsvdM0xd1fZQoaAZHQIud6fra/RFoB03oA2gIR0CisDLV4HHFdX2UKGgGR0CMU7/ZuhsZaAdN6ANoCEdAorTy2F36h3V9lChoBkdAjJxouoP07WgHTegDaAhHQKK2k31BdD91fZQoaAZHQJJOmdbxEv1oB03oA2gIR0CiuyckleF+dX2UKGgGR0CISMc0+C9RaAdN6ANoCEdAor7eK2rn1XV9lChoBkdAiZG/47A+IWgHTegDaAhHQKLB3oUzsQd1fZQoaAZHQI8+27OE/SpoB03oA2gIR0CiwzV5jYqYdX2UKGgGR0CO1VynUDuCaAdN6ANoCEdAosfzXarWAnV9lChoBkdAjQioa99MK2gHTegDaAhHQKLMjVy3kPt1fZQoaAZHQJJXit9x6v9oB03oA2gIR0Ci0ScOskprdX2UKGgGR0CIwz2zOX3QaAdN6ANoCEdAotM/rWy1NXV9lChoBkdAjB8pF9a2W2gHTegDaAhHQKLYWhje9Bd1fZQoaAZHQJHH+DFqBVdoB03oA2gIR0Ci3AaciGFjdX2UKGgGR0CS3EHYHxBmaAdN6ANoCEdAot8RJqZc9nV9lChoBkdAfjtE/0NBnmgHTegDaAhHQKLgaM98qnZ1fZQoaAZHQJQxwWhysCFoB03oA2gIR0Ci5PMqJ/G3dX2UKGgGR0CTbfyYG+sYaAdN6ANoCEdAouirmEGqxXV9lChoBkdAiZxWattALWgHTegDaAhHQKLtHIlMRHx1fZQoaAZHQIlGNFMIu5BoB03oA2gIR0Ci70XIMjNZdX2UKGgGR0CQJpmKZUkwaAdN6ANoCEdAovWl8NQTEnV9lChoBkdAin8pazNUwWgHTegDaAhHQKL5Vg1m8NB1fZQoaAZHQIeK4m5UcXFoB03oA2gIR0Ci/GNEPUaydX2UKGgGR0CIY/T3qRlpaAdN6ANoCEdAov25yhi9ZnV9lChoBkdAjiAC2+fyw2gHTegDaAhHQKMCTPIn0Cl1fZQoaAZHQImg3pbD/ERoB03oA2gIR0CjBgNahYeUdX2UKGgGR0CTZNHJcPe6aAdN6ANoCEdAowl/Z00WM3V9lChoBkdAh/Yte+mFamgHTegDaAhHQKMLbfeDWbx1fZQoaAZHQJQoS7pV0cRoB03oA2gIR0CjEqh8x9G7dX2UKGgGR0CHu6+hXbM5aAdN6ANoCEdAoxaMQ2/BWXV9lChoBkdAi4tCRGMGYGgHTegDaAhHQKMZlNlAeJZ1fZQoaAZHQI16bNSqEOBoB03oA2gIR0CjGvreQ+2WdX2UKGgGR0CQJR3EAHVxaAdN6ANoCEdAox+J3A2ycHV9lChoBkdAi66BStNi6WgHTegDaAhHQKMjOrbxmTV1fZQoaAZHQIqx07hegL9oB03oA2gIR0CjJlg1NxlydX2UKGgGR0CMwLZrYXfqaAdN6ANoCEdAoyfxK8L8aXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 39266, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e547bca9718aa7211192885dbaf56a81bddee85c4985113f6722975a9a93c50
|
3 |
+
size 1058753
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1132.7121344578802, "std_reward": 176.79773156427532, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-19T09:52:13.334932"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0df2321c6784c7d191da1c69e6883e21a0717ff53191d71496b6b1d9f47633e6
|
3 |
+
size 2176
|