keishihara commited on
Commit
f0e3620
·
verified ·
1 Parent(s): 48987e9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -3
README.md CHANGED
@@ -1,3 +1,80 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # ACT-Estimator
6
+
7
+ This model is designed for use with [ACT-Bench](https://github.com/turingmotors/ACT-Bench) to compute evaluation metrics. It serves as a prediction model that reconstructs trajectories from driving videos generated by autonomous driving world models.
8
+ The predicted trajectory is compared against the instruction trajectory, which serves as the reference, to calculate the evaluation metrics for ACT-Bench.
9
+
10
+
11
+ ## Model Summary
12
+
13
+ - Developed by: Turing Inc.
14
+ - Licence: Apache License 2.0
15
+ - Model Size: 20.4M
16
+
17
+
18
+ ## Model Date
19
+
20
+ `ACT-Estimator` was trained on November 2024.
21
+
22
+
23
+ ## Model I/O
24
+
25
+ Input
26
+ - `generated_videos` (shape: (batch_size, 3, 44, 224, 224))
27
+ - `timestamps` (shape: (batch_size, 44))
28
+
29
+ Output
30
+ - `command` (shape: (batch_size, 9))
31
+ - `waypoints` (shape: (batch_size, 44, 2))
32
+
33
+ ## Training Dataset
34
+
35
+ - Video frames-trajectory pairs from [nuScenes](https://www.nuscenes.org/) dataset. Details are described in our [paper]().
36
+
37
+
38
+ ## Authors
39
+
40
+ Here are the team members who contributed to the development of `ACT-Bench`:
41
+ - Hidehisa Arai
42
+ - Keishi Ishihara
43
+ - Tsubasa Takahashi
44
+ - Yu Yamaguchi
45
+
46
+
47
+ ## How to use
48
+
49
+ ```python
50
+ import torch
51
+ from transformers import AutoModel
52
+
53
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
54
+
55
+ act_estimator = AutoModel.from_pretrained("turing-motors/Act-Estimator", trust_remote_code=True)
56
+ act_estimator.to(device)
57
+ act_estimator.eval()
58
+
59
+ # dummy inputs
60
+ generated_videos = torch.randn(1, 3, 44, 224, 224).to(device)
61
+ timestamps = torch.randn(1, 44).to(device)
62
+
63
+ out = act_estimator(generated_videos, timestamps)
64
+ out.keys()
65
+ # dict_keys(['command', 'waypoints'])
66
+ ```
67
+
68
+
69
+ ## License
70
+
71
+ The ACT-Estimator is licensed under the Apache License 2.0.
72
+
73
+
74
+ ## Citation
75
+
76
+ If you find our work helpful, please feel free to cite us.
77
+
78
+ ```
79
+ coming soon
80
+ ```